Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Development and Differentiation of the Gastrointestinal System

1. TamPP, Kanai‐AzumaM, KanaiY. Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Curr Opin Genet Dev2003;13:393. CrossRef

2. KuoCT, MorriseyEE, AnandappaR, et al.GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev1997;11:1048. CrossRef

3. MolkentinJD, LinQ, DuncanSA, et al.Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev1997;11:1061. CrossRef

4. NaritaN, BielinskaM, WilsonD. Wild‐type endoderm abrogates the ventral developmental defects associated with GATA‐4 deficiency in the mouse. Dev Biol1997;189:270. CrossRef

5. AngSL, RossantJ. HNF‐3 beta is essential for node and notochord formation in mouse development. Cell1994;78:561. CrossRef

6. DufortD, SchwartzL, HarpalK, et al.The transcription factor HNF3b is required in visceral endoderm for normal primitive streak morphogenesis. Development1998;125:3015.

7. RoebroekAJ, UmansL, PauliIG, et al.Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development1998;125:4863.

8. HartAH, HartleyL, SourrisK, et al.Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development2002;129:3597.

9. Kanai‐AzumaM, KanaiY, GadJM, et al.Depletion of definitive gut endoderm in Sox17‐null mutant mice. Development2002;129:2367.

10. NakagoshiH. Functional specification in the Drosophila endoderm. Dev Growth Differ2005;47:383. CrossRef

11. Nusslein‐VolhardC, WieschausE. Mutations affecting segment number and polarity in Drosophila. Nature1980;287:795. CrossRef

12. SilbergDG, SwainGP, SuhER, et al.Cdx1 and cdx2 expression during intestinal development. Gastroenterology2000;119:961. CrossRef

13. BeckF, ChawengsaksophakK, WaringP, et al.Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc Natl Acad Sci U S A1999;96:7318. CrossRef

14. ChawengsakophakK, JamesR, HammondV, et al.Homeosis and intestinal tumours in Cdx2 mutant mice. Nature1997;386:84. CrossRef

15. MutohH, HakamataY, SatoK, et al.Conversion of gastric mucosa to intestinal metaplasia in Cdx2‐expressing transgenic mice. Biochem Biophys Res Commun2002;294:470. CrossRef

16. SilbergDG, SullivanJ, KangE, et al.Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology2002;122:689. CrossRef

17. BouletAM, CapecchiMR. Targeted disruption of hoxc‐4 causes esophageal defects and vertebral transformations. Dev Biol1996;177:232. CrossRef

18. KondoT, DolleP, ZakanyJ, et al.Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development1996;122:2651.

19. WarotX, Fromental‐RamainC, FraulobV, et al.Gene dosage‐dependent effects of the Hoxa‐13 and Hoxd‐13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development1997;124:4781.

20. ZakanyJ, DubouleD. Hox genes and the making of sphincters. Nature1999;401:761. CrossRef

21. BeckF, TataF, ChawengsaksophakK. Homeobox genes and gut development. Bioessays2000;22:431. CrossRef

22. Grapin‐BottonA, MeltonDA. Endoderm development: from patterning to organogenesis. Trends Genet2000;16:124. CrossRef

23. YokouchiY, SakiyamaJ, KuroiwaA. Coordinated expression of Abd‐B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol1995;169:76. CrossRef

24. Le DouarinNM. An experimental analysis of liver development. Med Biol1975;53:427.

25. HayashiK, YasugiS, MizunoT. Pepsinogen gene transcription induced in heterologous epithelial‐mesenchymal recombinations of chicken endoderms and glandular stomach mesenchyme. Development1988;103:725.

26. KedingerM, Simon‐AssmannPM, LacroixB, et al.Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev Biol1986;113:474. CrossRef

27. RawdonBB. Early development of the gut: new light on an old hypothesis. Cell Biol Int2001;25:9. CrossRef

28. WellsJ, MeltonD. Early mouse endoderm is patterned by soluble factor from adjacent germ layers. Development2000;127:1563.

29. KumarM, JordanN, MeltonD, et al.Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol2003;259:109. CrossRef

30. StaffordD, PrinceVE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol2002;12:1215. CrossRef

31. LawsonK, MenesesJ, PedersenR. Clonal analysis of epiblast fate during germ layer formation in the mouse. Development1991;113:891.

32. RosenquistG. The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. Dev Biol1971;26:323. CrossRef

33. ZaretK. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol1999;209:1. CrossRef

34. ZaretKS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet2002;3:499. CrossRef

35. LeeCS, FriedmanJR, FulmerJT, et al.The initiation of liver development is dependent on Foxa transcription factors. Nature2005;435:944. CrossRef

36. OrnitzD, ItohN. Fibroblast growth factors. Genome Biol2001;2:3005.1. CrossRef

37. DeutschG, JungJ, ZhengM, et al.A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development2001;128:871.

38. SerlsAE, DohertyS, ParvatiyarP, et al.Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development2005;132:35. CrossRef

39. ContakosSP, GaydosCM, PfeilEC, et al.Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Dev Biol2005;288:294. CrossRef

40. KikuchiY, VerkadeH, ReiterJF, et al.Notch signaling can regulate endoderm formation in zebrafish. Dev Dyn2004;229:756. CrossRef

41. GroveJE, BrusciaE, KrauseDS. Plasticity of bone marrow‐derived stem cells. Stem Cells2004;22:487. CrossRef

42. Alvarez‐DoladoM, PardalR, Garcia‐VerdugoJM, et al.Fusion of bone‐marrow‐derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature2003;425:968. CrossRef

43. VassilopoulosG, WangPR, RussellDW. Transplanted bone marrow regenerates liver by cell fusion. Nature2003;422:901. CrossRef

44. WangX, WillenbringH, AkkariY, et al.Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature2003;422:897. CrossRef

45. TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell2006;126:663. CrossRef

46. GrandRJ, WatkinsJB, TortiFM. Development of the human gastrointestinal tract. A review. Gastroenterology1976;70:790.

47. GualdiR, BossardP, ZhengM, et al.Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev1996;10:1670. CrossRef

48. JungJ, ZhengM, GoldfarbM, et al.Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science1999;284:1998. CrossRef

49. RossiJ, DunnN, HoganB, et al.Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev2001;15:1998. CrossRef

50. MatsumotoK, YoshitomiH, RossantJ, et al.Liver organogenesis promoted by endothelial cells prior to vascular function. Science2001;294:559. CrossRef

51. KengV, YagiH, IkawaM, et al.Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys Res Commun2000;276:1155. CrossRef

52. Martinez BarberaJ, ClementsM, ThomasP, et al.The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development2000;127:2433.

53. HentschB, LiR, HartleyL, et al.Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev1996;10:70. CrossRef

54. Sosa‐PinedaB, WigleJ, OliverG. Hepatocyte migration during liver development requires Prox1. Nat Genet2000;25:254. CrossRef

55. ZhaoR, WattAJ, LiJ, et al.GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol2005;25:2622. CrossRef

56. ZhangW, YatskievychTA, BakerRK, et al.Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev Biol2004;268:312. CrossRef

57. BladtF, RiethmacherD, IsenmannS, et al.Essential role for the c‐met receptor in the migration of myogenic precursor cells into the limb bud. Nature1995;376:768. CrossRef

58. SchmidtC, BladtF, GoedeckeS, et al.Scatter factor/hepatocyte growth factor is essential for liver development. Nature1995;373:699. CrossRef

59. HuhCG, FactorVM, SanchezA, et al.Hepatocyte growth factor/c‐met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A2004;101:4477. CrossRef

60. KosaiK, MatsumotoK, NagataS, et al.Abrogation of Fas‐induced fulminant hepatic failure in mice by hepatocyte growth factor. Biochem Biophys Res Commun1998;244:683. CrossRef

61. DoiT, MarinoM, TakahashiT, et al.Absence of tumor necrosis factor rescues RelA‐deficient mice from embryonic lethality. Proc Natl Acad Sci U S A1999;96:2994. CrossRef

62. LiH, ArberS, JessellT, et al.Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet1999;23:67.

63. RosenfeldM, PritchardL, ShiojiriN, et al.Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR‐1 double knockout mice. Am J Pathol2000;156:997. CrossRef

64. YinXM, DingWX. Death receptor activation‐induced hepatocyte apoptosis and liver injury. Curr Mol Med2003;3:491. CrossRef

65. ClotmanF, LannoyVJ, ReberM, et al.The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development2002;129:1819.

66. CoffinierC, GreshL, FietteL, et al.Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development2002;129:1829.

67. LiL, KrantzID, DengY, et al.Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet1997;16:243. CrossRef

68. OdaT, ElkahlounAG, PikeBL, et al.Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet1997;16:235. CrossRef

69. ZongY, StangerBZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol2011;43:257. CrossRef

70. LiJ, NingG, DuncanSA. Mammalian hepatocyte differentiation requires the transcription factor HNF‐4alpha. Genes Dev2000;14:464.

71. DuncanSA. Transcriptional regulation of liver development. Dev Dyn2000;219:131. CrossRef

72. WessellsN, CohenJ. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol1967;15:237. CrossRef

73. KimS, HebrokM, MeltonD. Notochord to endoderm signaling is required for pancreas development. Development1997;124:4243.

74. LammertE, CleaverO, MeltonD. Induction of pancreatic differentiation by signals from blood vessels. Science2001;294:564. CrossRef

75. HebrokM, KimS, MeltonD. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev1998;12:1705. CrossRef

76. KimSK, MeltonDA. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc Natl Acad Sci U S A1998;95:13036. CrossRef

77. ApelqvistA, LiH, SommerL, et al.Notch signalling controls pancreatic cell differentiation. Nature1999;400:877. CrossRef

78. GuG, DubauskaiteJ, MeltonD. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development2002;129:2447.

79. Grapin‐BottonA, MajithiaAR, MeltonDA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev2001;15:444. CrossRef

80. OffieldMF, JettonTL, LaboskyPA, et al.PDX‐1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development1996;122:983.

81. OhlssonH, KarlssonK, EdlundT. IPF1, a homeodomain‐containing transactivator of the insulin gene. EMBO J1993;12:4251.

82. StoffersDA, ZinkinNT, StanojevicV, et al.Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet1997;15:106. CrossRef

83. EdlundH. Pancreas: how to get there from the gut?Curr Biol1999;11:663. CrossRef

84. StoffersDA, FerrerJ, ClarkeWL, et al.Early‐onset type‐II diabetes mellitus (MODY4) linked to IPF1. Nat Genet1997;17:138. CrossRef

85. HarrisonK, ThalerJ, PfaffS, et al.Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9‐deficient mice. Nat Genet1999;23:71.

86. AhlgrenU, PfaffS, JessellT, et al.Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature1997;385:257. CrossRef

87. SlackJ. Developmental biology of the pancreas. Development1995;121:1569.

88. HoganB. Morphogenesis. Cell1999;96:225. CrossRef

89. MirallesF, CzernichowP, OzakiK, et al.Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci U S A1999;96:6267. CrossRef

90. BhushanA, ItohN, KatoS, et al.Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development2001;128:5109.

91. ApelqvistA, AhlgrenU, EdlundH. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol1997;7:801. CrossRef

92. HaldJ, HjorthJP, GermanMS, et al.Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol2003;260:426. CrossRef

93. HartA, PapadopoulouS, EdlundH. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn2003;228:185. CrossRef

94. MurtaughLC, StangerBZ, KwanKM, et al.Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A2003;100:14920. CrossRef

95. NorgaardGA, JensenJN, JensenJ. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol2003;264:323. CrossRef

96. KawaguchiY, CooperB, GannonM, et al.The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet2002;32:128. CrossRef

97. KrappA, KnoflerM, FrutigerS, et al.The p48 DNA‐binding subunit of transcription factor PTF1 is a new exocrine pancreas‐specific basic helix‐loop‐helix protein. EMBO J1996;15:4317.

98. KrappA, KnoflerM, LedermannB, et al.The bHLH protein PTF1‐p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev1998;12:3752. CrossRef

99. PinCL, RukstalisJM, JohnsonC, et al.The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol2001;155:519. CrossRef

100. GradwohlG, DierichA, LeMeurM, et al.neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A2000;97:1607. CrossRef

101. SchwitzgebelVM, ScheelDW, ConnersJR, et al.Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development2000;127:3533.

102. LeeJC, SmithSB, WatadaH, et al.Regulation of the pancreatic pro‐endocrine gene neurogenin3. Diabetes2001;50:928. CrossRef

103. JacqueminP, DurviauxSM, JensenJ, et al.Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol2000;20:4445. CrossRef

104. KempDM, ThomasMK, HabenerJF. Developmental aspects of the endocrine pancreas. Rev Endocr Metab Disord2003;4:5. CrossRef

105. DeltourL, LeduqueP, PaldiA, et al.Polyclonal origin of pancreatic islets in aggregation mouse chimaeras. Development1991;112:1115.

106. DorY, BrownJ, MartinezOI, et al.Adult pancreatic beta‐cells are formed by self‐duplication rather than stem‐cell differentiation. Nature2004;429:41. CrossRef

107. de Santa BarbaraP, RobertsDJ. Tail gut endoderm and gut/genitourinary/tail development: a new tissue‐specific role for Hoxa13. Development2002;129:551.

108. RobertsD, SmithD, GoffD, et al.Epithelial‐mesenchymal signaling during the regionalization of the chick gut. Development1998;125:2791.

109. AubinJ, DeryU, LemieuxM, et al.Stomach regional specification requires Hoxa5‐driven mesenchymal‐epithelial signaling. Development2002;129:4075.

110. ZhangX, StappenbeckTS, WhiteAC, et al.Reciprocal epithelial‐mesenchymal FGF signaling is required for cecal development. Development2006;133:173. CrossRef

111. SandersonIR, EzzellRM, KedingerM, et al.Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix. Proc Natl Acad Sci U S A1996;93:7717. CrossRef

112. MoniotB, BiauS, FaureS, et al.SOX9 specifies the pyloric sphincter epithelium through mesenchymal‐epithelial signals. Development2004;131:3795. CrossRef

113. SmithD, NielsenC, TabinC, et al.Roles of BMP signaling and NKX2.5 in patterning at the chick midgut‐foregut boundary. Development2000;127:3671.

114. TheodosiouNA, TabinCJ. Sox9 and Nkx2.5 determine the pyloric sphincter epithelium under the control of BMP signaling. Dev Biol2005;279:481. CrossRef

115. SmithD, TabinC. BMP signalling specifies the pyloric sphincter. Nature1999;402:748. CrossRef

116. NaritaT, SaitohK, KamedaT, et al.BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP‐2 and Noggin expression. Development2000;127:981.

117. KimBM, BuchnerG, MiletichI, et al.The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell2005;8:611. CrossRef

118. TabinCJ, VoganKJ. A two‐cilia model for vertebrate left‐right axis specification. Genes Dev2003;17:1. CrossRef

119. MenardD. Growth‐promoting factors and the development of the human gut. In: LebenthalE(ed). Human Gastrointestinal Development. New York: Raven Press; 1989: 123.

120. WangLC, NassirF, LiuZY, et al.Disruption of hedgehog signaling reveals a novel role in intestinal morphogenesis and intestinal‐specific lipid metabolism in mice. Gastroenterology2002;122:469. CrossRef

121. SukegawaA, NaritaT, KamedaT, et al.The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development2000;127:1971.

122. SaotomeI, CurtoM, McClatcheyAI. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell2004;6:855. CrossRef

123. WintonDJ, BlountMA, PonderBA. A clonal marker induced by mutation in mouse intestinal epithelium. Nature1988;333:463. CrossRef

124. PottenCS. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci1998;353:821. CrossRef

125. BjerknesM, ChengH. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology1999;116:7. CrossRef

126. KaestnerKH, SilbergDG, TraberPG, et al.The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev1997;11:1583. CrossRef

127. JensenJ, PedersenEE, GalanteP, et al.Control of endodermal endocrine development by Hes‐1. Nat Genet2000;24:36. CrossRef

128. YangQ, BerminghamNA, FinegoldMJ, et al.Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science2001;294:2155. CrossRef

129. JennyM, UhlC, RocheC, et al.Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J2002;21:6338. CrossRef

130. LeeCS, PerreaultN, BrestelliJE, et al.Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev2002;16:1488. CrossRef

131. SchonhoffSE, Giel‐MoloneyM, LeiterAB. Neurogenin 3‐expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non‐endocrine cell types. Dev Biol2004;270:443. CrossRef

132. CrosnierC, VargessonN, GschmeissnerS, et al.Delta‐Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development2005;132:1093. CrossRef

133. GregorieffA, PintoD, BegthelH, et al.Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology2005;129:626. CrossRef

134. PintoD, GregorieffA, BegthelH, et al.Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev2003;17:1709. CrossRef

135. BatlleE, HendersonJT, BeghtelH, et al.Beta‐catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell2002;111:251. CrossRef

136. BeckF, ChawengsaksophakK, LuckettJ, et al.A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice. Dev Biol2003;255:399. CrossRef

137. DrummondF, SowdenJ, MorrisonK, et al.The caudal‐type homeobox protein Cdx‐2 binds to the colon promoter of the carbonic anhydrase 1 gene. Eur J Biochem1996;236:670. CrossRef

138. SuhE, ChenL, TaylorJ, et al.A homeodomain protein related to caudal regulates intestine‐specific gene transcription. Mol Cell Biol1994;14:7340. CrossRef

139. TroelsenJT, MitchelmoreC, SpodsbergN, et al.Regulation of lactase‐phlorizin hydrolase gene expression by the caudal‐related homoeodomain protein Cdx‐2. Biochem J1997;322:833. CrossRef

140. HenningS, RubinD, ShulmanR. Ontogeny of the intestinal mucosa. In: JohnsonLE(ed). Physiology of the Gastrointestinal Tract, 3rd edn. New York: Raven Press; 1994: 571.

141. EbersDW, GibbsGE, SmithDI. Gastric acidity on the first day of life. Pediatrics1956;18:800.

142. ColonyPC, NeutraMR. Macromolecular transport in the fetal rat intestine. Gastroenterology1985;89:294.

143. WalkerWA, CornellR, DavenportLM, et al.Macromolecular absorption. Mechanism of horseradish peroxidase uptake and transport in adult and neonatal rat intestine. J Cell Biol1972;54:195. CrossRef

144. WalkerWA, IsselbacherKJ. Uptake and transport of macromolecules by the intestine. Possible role in clinical disorders. Gastroenterology1974;67:531.

145. HamoshM. Oral lipases and lipid digestion during the neonatal period. In: LebenthalE(ed). Textbook of Gastroenterology and Nutrition in Infancy. New York: Raven Press; 1981: 445.

146. MenardD, MonfilsS, TremblayE. Ontogeny of human gastric lipase and pepsin activities. Gastroenterology1995;108:1650. CrossRef

147. PerinN, KeelanM, Jarocka‐CyrtaE, et al.Ontogeny of intestinal adaptation in rats in response to isocaloric changes in dietary lipids. Am J Physiol1997;273:G713.

148. AcraSA, GhishanFK. Active bile salt transport in the ileum: characteristics and ontogeny. J Pediatr Gastroenterol Nutr1990;10:421. CrossRef

149. HenningSJ. Ontogeny of enzymes in the small intestine. Annu Rev Physiol1985;47:231. CrossRef

150. WinterHS, HendrenRB, FoxCH, et al.Human intestine matures as nude mouse xenograft. Gastroenterology1991;100:89.

151. TrahairJF, HardingR. Restitution of swallowing in the fetal sheep restores intestinal growth after midgestation esophageal obstruction. J Pediatr Gastroenterol Nutr1995;20:156. CrossRef

152. BuchmillerTL, FonkalsrudEW, KimCS, et al.Upregulation of nutrient transport in fetal rabbit intestine by transamniotic substrate administration. J Surg Res1992;52:443. CrossRef

153. HeirdWC, SchwarzSM, HansenIH. Colostrum‐induced enteric mucosal growth in beagle puppies. Pediatr Res1984;18:512. CrossRef

154. CastilloRO, FengJJ, StevensonDK, et al.Regulation of intestinal ontogeny by intraluminal nutrients. J Pediatr Gastroenterol Nutr1990;10:199. CrossRef

155. WealeAR, EdwardsAG, BaileyM, et al.Intestinal adaptation after massive intestinal resection. Postgrad Med J2005;81:178. CrossRef

156. ErwinCR, JarboeMD, SartorMA, et al.Developmental characteristics of adapting mouse small intestine crypt cells. Gastroenterology2006;130:1324. CrossRef

157. IsraelEJ, SchiffrinEJ, CarterEA, et al.Prevention of necrotizing enterocolitis in the rat with prenatal cortisone. Gastroenterology1990;99:1333.

158. MugliaL, JacobsonL, DikkesP, et al.Corticotropin‐releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature1995;373:427. CrossRef

159. YamadaM, SagaY, ShibusawaN, et al.Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin‐releasing hormone gene. Proc Natl Acad Sci U S A1997;94:10862. CrossRef

160. KohTJ, GoldenringJR, ItoS, et al.Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology1997;113:1015. CrossRef

161. LanghansN, RindiG, ChiuM, et al.Abnormal gastric histology and decreased acid production in cholecystokinin‐B/gastrin receptor‐deficient mice. Gastroenterology1997;112:280. CrossRef

162. ChangA, JamiesonJD. Stimulus‐secretion coupling in the developing exocrine pancreas: secretory responsiveness to cholecystokinin. J Cell Biol1986;103:2353. CrossRef

163. TakeuchiK, PeitschW, JohnsonLR. Mucosal gastrin receptor. V. Development in newborn rats. Am J Physiol1981;240:G163.

164. AhlmanH, NilssonO. The gut as the largest endocrine organ in the body. Ann Oncol2001;12(Suppl 2):S63. CrossRef

165. GoyalRK, HiranoI. The enteric nervous system. N Engl J Med1996;334:1106. CrossRef

166. GershonMD. The enteric nervous system: a second brain. Hosp Pract (1995)1999;34:31, 35, 41. CrossRef

167. Le DouarinNM, CreuzetS, CoulyG, et al.Neural crest cell plasticity and its limits. Development2004;131:4637. CrossRef

168. PhamTD, GershonMD, RothmanTP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol1991;314:789. CrossRef

169. LecoinL, GabellaG, Le DouarinN. Origin of the c‐kit‐positive interstitial cells in the avian bowel. Development1996;122:725.

170. YoungHM, CiampoliD, SouthwellBR, et al.Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol1996;180:97. CrossRef

171. HuizingaJD, ThunebergL, KluppelM, et al.W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature1995;373:347. CrossRef

172. MaedaH, YamagataA, NishikawaS, et al.Requirement of c‐kit for development of intestinal pacemaker system. Development1992;116:369.

173. HirotaS, IsozakiK, MoriyamaY, et al.Gain‐of‐function mutations of c‐kit in human gastrointestinal stromal tumors. Science1998;279:577. CrossRef

174. NakaharaM, IsozakiK, HirotaS, et al.A novel gain‐of‐function mutation of c‐kit gene in gastrointestinal stromal tumors. Gastroenterology1998;115:1090. CrossRef

175. KindblomLG, RemottiHE, AldenborgF, et al.Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol1998;152:1259.

176. MiettinenM, MonihanJM, Sarlomo‐RikalaM, et al.Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol1999;23:1109. CrossRef

177. GariepyCE. Intestinal motility disorders and development of the enteric nervous system. Pediatr Res2001;49:605. CrossRef

178. DumontRC, RudolphCD. Development of gastrointestinal motility in the infant and child. Gastroenterol Clin North Am1994;23:655.

179. PritchardJA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol1966;28:606.

180. HitchcockRJ, PembleMJ, BishopAE, et al.The ontogeny and distribution of neuropeptides in the human fetal and infant esophagus. Gastroenterology1992;102:840.

181. HitchcockRJ, PembleMJ, BishopAE, et al.Quantitative study of the development and maturation of human oesophageal innervation. J Anat1992;180:175.

182. NewellSJ, SarkarPK, DurbinGM, et al.Maturation of the lower oesophageal sphincter in the preterm baby. Gut1988;29:167. CrossRef

183. CarreIJ. Management of gastro‐oesophageal reflux. Arch Dis Child1985;60:71. CrossRef

184. BorregoS, SaezME, RuizA, et al.Specific polymorphisms in the RET proto‐oncogene are over‐represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J Med Genet1999;36:771. CrossRef

185. SvenssonPJ, AnvretM, MolanderML, et al.Phenotypic variation in a family with mutations in two Hirschsprung‐related genes (RET and endothelin receptor B). Hum Genet1998;103:145. CrossRef

186. AngristM, BolkS, HalushkaM, et al.Germline mutations in glial cell line‐derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet1996;14:341. CrossRef

187. IvanchukSM, MyersSM, EngC, et al.De novo mutation of GDNF, ligand for the RET/GDNFR‐alpha receptor complex, in Hirschsprung disease. Hum Mol Genet1996;5:2023. CrossRef

188. DorayB, SalomonR, AmielJ, et al.Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet1998;7:1449. CrossRef

189. PattynA, MorinX, CremerH, et al.The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature1999;399:366. CrossRef

190. Garcia‐BarceloM, ShamMH, LuiVC, et al.Association study of PHOX2B as a candidate gene for Hirschsprung's disease. Gut2003;52:563. CrossRef

191. McCallionAS, EmisonES, KashukCS, et al.Genomic variation in multigenic traits: hirschsprung disease. Cold Spring Harb Symp Quant Biol2003;68:373. CrossRef

192. LanePW, LiuHM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered1984;75:435.

193. HerbarthB, PingaultV, BondurandN, et al.Mutation of the Sry‐related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A1998;95:5161. CrossRef

194. Southard‐SmithEM, KosL, PavanWJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet1998;18:60. CrossRef

195. KapurRP. Hirschsprung disease and other enteric dysganglionoses. Crit Rev Clin Lab Sci1999;36:225. CrossRef

196. HofstraRM, ValdenaireO, ArchE, et al.A loss‐of‐function mutation in the endothelin‐converting enzyme 1 (ECE‐1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet1999;64:304. CrossRef

197. TangP, McKinleyMJ, SporrerM, et al.Inlet patch: prevalence, histologic type, and association with esophagitis, Barrett esophagus, and antritis. Arch Pathol Lab Med2004;128:444.

198. DolanRV, ReMineWH, DockertyMB. The fate of heterotopic pancreatic tissue. A study of 212 cases. Arch Surg1974;109:762. CrossRef

199. TiedemannF. Uber die Verschiedenheiten des Ausfuhrungsganges der Bauchspeicheldruse bei den Menschen und Saugetieren. Dtsch Arch Physiol1818;4:403.

200. KiernanPD, ReMineSG, KiernanPC, et al.Annular pancreas: May Clinic experience from 1957 to 1976 with review of the literature. Arch Surg1980;115:46. CrossRef

201. DouieWJ, KrigeJE, BornmanPC. Annular pancreas in adults. A report of two cases and a review of the literature. Hepatogastroenterology2002;49:1716.

202. MakerV, GerzenshteinJ, LernerT. Annular pancreas in the adult: two case reports and review of more than a century of literature. Am Surg2003;69:404.

203. HebrokM, KimS, St‐JacquesB, et al.Regulation of pancreas development by hedgehog signaling. Development2000;127:4905.

204. LainakisN, AntypasS, PanagidisA, et al.Annular pancreas in two consecutive siblings: an extremely rare case. Eur J Pediatr Surg2005;15:364. CrossRef

205. St‐VilD, BrandtML, PanicS, et al.Meckel's diverticulum in children: a 20‐year review. J Pediatr Surg1991;26:1289. CrossRef

206. MartinJP, ConnorPD, CharlesK. Meckel's diverticulum. Am Fam Physician2000;61:1037, 1044.

207. BossardP, ZaretK. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's diverticulum. Development2000;127:4915.

208. DesmetVJ. Ludwig symposium on biliary disorders–part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc1998;73:80. CrossRef

209. McDaniellR, WarthenDM, Sanchez‐LaraPA, et al.NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet2006;79:169. CrossRef

210. CrosnierC, Attie‐BitachT, Encha‐RazaviF, et al.JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome. Hepatology2000;32:574. CrossRef

211. JonesEA, Clement‐JonesM, WilsonDI. JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype. J Med Genet2000;37:658. CrossRef

212. TanimizuN, MiyajimaA. Notch signaling controls hepatoblast differentiation by altering the expression of liver‐enriched transcription factors. J Cell Sci2004;117:3165. CrossRef

213. McCrightB, LozierJ, GridleyT. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development2002;129:1075.

214. KodamaY, HijikataM, KageyamaR, et al.The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology2004;127:1775. CrossRef

215. ZongY, PanikkarA, XuJ, et al.Notch signaling controls liver development by regulating biliary differentiation. Development2009;136:1727. CrossRef

216. BezerraJA. Potential etiologies of biliary atresia. Pediatr Transplant2005;9:646. CrossRef

217. CarmiR, MageeCA, NeillCA, et al.Extrahepatic biliary atresia and associated anomalies: etiologic heterogeneity suggested by distinctive patterns of associations. Am J Med Genet1993;45:683. CrossRef

218. MazziottiMV, WillisLK, HeuckerothRO, et al.Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology1999;30:372. CrossRef

219. YokoyamaT, CopelandNG, JenkinsNA, et al.Reversal of left‐right asymmetry: a situs inversus mutation. Science1993;260:679. CrossRef

220. KohsakaT, YuanZR, GuoSX, et al.The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology2002;36:904. CrossRef

221. HatadaI, OhashiH, FukushimaY, et al.An imprinted gene p57KIP2 is mutated in Beckwith‐Wiedemann syndrome. Nat Genet1996;14:171. CrossRef

222. EggenschwilerJ, LudwigT, FisherP, et al.Mouse mutant embryos overexpressing IGF‐II exhibit phenotypic features of the Beckwith‐Wiedemann and Simpson‐Golabi‐Behmel syndromes. Genes Dev1997;11:3128. CrossRef

223. DelavalK, WagschalA, FeilR. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays2006;28:453. CrossRef

224. BliekJ, TerhalP, van den BogaardMJ, et al.Hypomethylation of the H19 gene causes not only Silver‐Russell syndrome (SRS) but also isolated asymmetry or an SRS‐like phenotype. Am J Hum Genet2006;78:604. CrossRef

225. EggermannT, MeyerE, ObermannC, et al.Is maternal duplication of 11p15 associated with Silver‐Russell syndrome?J Med Genet2005;42:e26. CrossRef

226. GicquelC, RossignolS, CabrolS, et al.Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver‐Russell syndrome. Nat Genet2005;37:1003. CrossRef

227. StangerBZ, MeltonD. Development of endodermal derivatives in the lung, liver, pancreas, and gut. In: EpsteinC, EricksonRP, Wynshaw‐BorisA(eds). Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis. Oxford: Oxford University Press; 2003: 182.

228. SanchoE, BatlleE, CleversH. Live and let die in the intestinal epithelium. Curr Opin Cell Biol2003;15:763. CrossRef

229. SellS. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol2004;51:1. CrossRef

230. Al‐HajjM, WichaMS, Benito‐HernandezAet al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA2003;100:3983. CrossRef

231. SinghSK, HawkinsC, ClarkeID, et al.Identification of human brain tumour initiating cells. Nature2004;432:396. CrossRef

232. ReyaT, DuncanAW, AillesL, et al.A role for Wnt signalling in selfrenewal of haematopoietic stem cells. Nature2003;423(6938):409 CrossRef