Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Stem Cells and Tissue Renewal

1. NoahTK, DonahueB, ShroyerNF. Intestinal development and differentiation. Exp Cell Res2011;317(19):2702. CrossRef

2. ChengH, LeblondCP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat1974;141(4):461. CrossRef

3. ChengH, LeblondCP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero‐endocrine cells. Am J Anat1974;141(4):503. CrossRef

4. GerbeF, BrulinB, MakriniL, et al.DCAMKL‐1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology2009;137(6):2179. CrossRef

5. BjerknesM, KhandanpourC, MoroyT, et al.Origin of the brush cell lineage in the mouse intestinal epithelium. Dev Biol2012;362(2):194. CrossRef

6. BjerknesM, ChengH. The stem‐cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am J Anat1981;160(1):51. CrossRef

7. OuelletteAJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol2010;26(6):547. CrossRef

8. CleversHC, BevinsCL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol2013;75:289. CrossRef

9. SatoT, van EsJH, SnippertHJ, et al.Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature2011;469(7330):415. CrossRef

10. IrelandH, HoughtonC, HowardL, et al.Cellular inheritance of a Cre‐activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev Dyn2005;233(4):1332. CrossRef

11. RothenbergME, NusseY, KaliskyT, et al.Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology2012;142(5):1195. CrossRef

12. CorrSC, GahanCC, HillC. M‐cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol2008;52(1):2. CrossRef

13. VanuytselT, SengerS, FasanoA, et al.Major signaling pathways in intestinal stem cells. Biochim Biophys Acta2013;1830(2):2410. CrossRef

14. BertrandFE, AngusCW, PartisWJ, et al.Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle2012;11(23):4344. CrossRef

15. BrabletzS, SchmalhoferO, BrabletzT. Gastrointestinal stem cells in development and cancer. J Pathol2009;217(2):307. CrossRef

16. CleversH, NusseR. Wnt/beta‐catenin signaling and disease. Cell2012;149(6):1192. CrossRef

17. HollandJD, KlausA, GarrattAN, et al.Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol2013;25(2):254. CrossRef

18. NiehrsC. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol2012;13(12):767. CrossRef

19. GregorieffA, CleversH. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev2005;19(8):877. CrossRef

20. ScovilleDH, SatoT, HeXC, et al.Current view: intestinal stem cells and signaling. Gastroenterology2008;134(3):849. CrossRef

21. WendP, HollandJD, ZieboldU, et al.Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol2010;21(8):855. CrossRef

22. GregorieffA, PintoD, BegthelH, et al.Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology2005;129(2):626. CrossRef

23. KorinekV, BarkerN, MoererP, et al.Depletion of epithelial stem‐cell compartments in the small intestine of mice lacking Tcf‐4. Nat Genet1998;19(4):379. CrossRef

24. van EsJH, HaegebarthA, KujalaP, et al.A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self‐renewal. Mol Cell Biol2012;32(10):1918. CrossRef

25. KuhnertF, DavisCR, WangHT, et al.Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf‐1. Proc Natl Acad Sci U S A2004;101(1):266. CrossRef

26. PintoD, GregorieffA, BegthelH, et al.Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev2003;17(14):1709. CrossRef

27. IrelandH, KempR, HoughtonC, et al.Inducible Cre‐mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta‐catenin. Gastroenterology2004;126(5):1236. CrossRef

28. GlinkaA, DoldeC, KirschN, et al.LGR4 and LGR5 are R‐spondin receptors mediating Wnt/beta‐catenin and Wnt/PCP signalling. EMBO Rep2011;12(10):1055. CrossRef

29. de LauW, BarkerN, LowTY, et al.Lgr5 homologues associate with Wnt receptors and mediate R‐spondin signalling. Nature2011;476(7360):293. CrossRef

30. RuffnerH, SprungerJ, CharlatO, et al.R‐Spondin potentiates Wnt/beta‐catenin signaling through orphan receptors LGR4 and LGR5. PLoS ONE2012;7(7):e40976. CrossRef

31. KimKA, KakitaniM, ZhaoJ, et al.Mitogenic influence of human R‐spondin1 on the intestinal epithelium. Science2005;309(5738):1256. CrossRef

32. BastideP, DaridoC, PannequinJ, et al.Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol2007;178(4):635. CrossRef

33. van EsJH, JayP, GregorieffA, et al.Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol2005;7(4):381. CrossRef

34. Mori‐AkiyamaY, van den BornM, van EsJH, et al.SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology2007;133(2):539. CrossRef

35. BatlleE, HendersonJT, BeghtelH, et al.Beta‐catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell2002;111(2):251. CrossRef

36. TetsuO, McCormickF. Beta‐catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature1999;398(6726):422. CrossRef

37. HeTC, SparksAB, RagoC, et al.Identification of c‐MYC as a target of the APC pathway. Science1998;281(5382):1509. CrossRef

38. MuncanV, SansomOJ, TertoolenL, et al.Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf‐4 target gene c‐Myc. Mol Cell Biol2006;26(22):8418. CrossRef

39. FortiniME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell2009;16(5):633. CrossRef

40. BaronM. An overview of the Notch signalling pathway. Semin Cell Dev Biol2003;14(2):113. CrossRef

41. VooijsM, LiuZ, KopanR. Notch: architect, landscaper, and guardian of the intestine. Gastroenterology2011;141(2):448. CrossRef

42. KochU, LehalR, RadtkeF. Stem cells living with a Notch. Development2013;140(4):689. CrossRef

43. VanDussenKL, CarulliAJ, KeeleyTM, et al.Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development2012;139(3):488. CrossRef

44. SanderGR, PowellBC. Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem2004;52(4):509. CrossRef

45. SchroderN, GosslerA. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns2002;2(3–4):247. CrossRef

46. JensenJ, PedersenEE, GalanteP, et al.Control of endodermal endocrine development by Hes‐1. Nat Genet2000;24(1):36. CrossRef

47. van EsJH, van GijnME, RiccioO, et al.Notch/gamma‐secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature2005;435(7044):959. CrossRef

48. MilanoJ, McKayJ, DagenaisC, et al.Modulation of notch processing by gamma‐secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci2004;82(1):341. CrossRef

49. PellegrinetL, RodillaV, LiuZ, et al.Dll1‐ and dll4‐mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology2011;140(4):1230. CrossRef

50. RiccioO, van GijnME, BezdekAC, et al.Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep2008;9(4):377. CrossRef

51. FreS, HuygheM, MourikisP, et al.Notch signals control the fate of immature progenitor cells in the intestine. Nature2005;435(7044):964. CrossRef

52. PottenCS, OwenG, BoothD. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci2002;115(Pt 11):2381.

53. PottenCS, GandaraR, MahidaYR, et al.The stem cells of small intestinal crypts: where are they?Cell Prolif2009;42(6):731. CrossRef

54. MarshmanE, BoothC, PottenCS. The intestinal epithelial stem cell. Bioessays2002;24(1):91. CrossRef

55. ChengH, LeblondCP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat1974;141(4):537. CrossRef

56. van de WeteringM, SanchoE, VerweijC, et al.The beta‐catenin/TCF‐4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell2002;111(2):241. CrossRef

57. BarkerN, van EsJH, KuipersJ, et al.Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature2007;449(7165):1003. CrossRef

58. RydingAD, SharpMG, MullinsJJ. Conditional transgenic technologies. J Endocrinol2001;171(1):1. CrossRef

59. SorianoP. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet1999;21(1):70. CrossRef

60. BarkerN, HuchM, KujalaP, et al.Lgr5(+ve) stem cells drive self‐renewal in the stomach and build long‐lived gastric units in vitro. Cell Stem Cell2010;6(1):25. CrossRef

61. HuchM, DorrellC, BojSF, et al.In vitro expansion of single Lgr5+ liver stem cells induced by Wnt‐driven regeneration. Nature2013;494(7436):247. CrossRef

62. BarkerN, RookmaakerMB, KujalaP, et al.Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep2012;2(3):540. CrossRef

63. JaksV, BarkerN, KasperM, et al.Lgr5 marks cycling, yet long‐lived, hair follicle stem cells. Nat Genet2008;40(11):1291. CrossRef

64. MunozJ, StangeDE, SchepersAG, et al.The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent “+4” cell markers. EMBO J2012;31(14):3079. CrossRef

65. Van der FlierLG, Sabates‐BellverJ, OvingI, et al.The Intestinal Wnt/TCF Signature. Gastroenterology2007;132(2):6282. CrossRef

66. van der FlierLG, HaegebarthA, StangeDE, et al.OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology2009;137(1):15. CrossRef

67. van der FlierLG, van GijnME, HatzisP, et al.Transcription factor achaete scute‐like 2 controls intestinal stem cell fate. Cell2009;136(5):903. CrossRef

68. PottenCS, KovacsL, HamiltonE. Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet1974;7(3):271.

69. CairnsJ. Mutation selection and the natural history of cancer. Nature1975;255(5505):197. CrossRef

70. LegraverendC, EscobarM, JayP. “The immortal DNA strand”: difficult to digest?Cell Stem Cell2010;6(4):298. CrossRef

71. SangiorgiE, CapecchiMR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet2008;40(7):915. CrossRef

72. BreaultDT, MinIM, CarloneDL, et al.Generation of mTert‐GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A2008;105(30):10420. CrossRef

73. TakedaN, JainR, LeBoeufMR, et al.Interconversion between intestinal stem cell populations in distinct niches. Science2011;334(6061):1420. CrossRef

74. PowellAE, WangY, LiY, et al.The pan‐ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell2012;149(1):146. CrossRef

75. TianH, BiehsB, WarmingS, et al.A reserve stem cell population in small intestine renders Lgr5‐positive cells dispensable. Nature2011;478(7368):255. CrossRef

76. MontgomeryRK, CarloneDL, RichmondCA, et al.Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A2011;108(1):179. CrossRef

77. WangY, PoulinEJ, CoffeyRJ. LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br J Cancer2013;108(9):1765. CrossRef

78. WongVW, StangeDE, PageME, et al.Lrig1 controls intestinal stem‐cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol2012;14(4):401. CrossRef

79. BarkerN, van OudenaardenA, CleversH. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell2012;11(4):452. CrossRef

80. ItzkovitzS, LyubimovaA, BlatIC, et al.Single‐molecule transcript counting of stem‐cell markers in the mouse intestine. Nat Cell Biol2012;14(1):106. CrossRef

81. SatoT, VriesRG, SnippertHJ, et al.Single Lgr5 stem cells build crypt‐villus structures in vitro without a mesenchymal niche. Nature2009;459(7244):262. CrossRef

82. CarmonKS, GongX, LinQ, et al.R‐spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta‐catenin signaling. Proc Natl Acad Sci U S A2011;108(28):11452. CrossRef

83. RichmondCA, BreaultDT. Regulation of gene expression in the intestinal epithelium. Prog Mol Biol Transl Sci2010;96:207. CrossRef

84. HaramisAP, BegthelH, van den BornM, et al.De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science2004;303(5664):1684. CrossRef

85. KooBK, StangeDE, SatoT, et al.Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods2012;9(1):81. CrossRef

86. de LauW, KujalaP, SchneebergerK, et al.Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol Cell Biol2012;32(18):3639. CrossRef

87. LiVS, CleversH. In vitro expansion and transplantation of intestinal crypt stem cells. Gastroenterology2012;143(1):30. CrossRef

88. YuiS, NakamuraT, SatoT, et al.Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med2012;18(4):618. CrossRef

89. PowellDW, PinchukIV, SaadaJI, et al.Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol2011;73:213. CrossRef

90. GeiserJ, VenkenKJ, De LisleRC, et al.A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet2012;8(6). CrossRef

91. KimTH, EscuderoS, ShivdasaniRA. Intact function of Lgr5 receptor‐expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A2012;109(10):3932. CrossRef

92. DurandA, DonahueB, PeignonG, et al.Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A2012;109(23):8965. CrossRef

93. FarinHF, Van EsJH, CleversH. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology2012;143(6):1518. CrossRef

94. YilmazOH, KatajistoP, LammingDW, et al.mTORC1 in the Paneth cell niche couples intestinal stem‐cell function to calorie intake. Nature2012;486(7404):490.

95. KooBK, SpitM, JordensI, et al.Tumour suppressor RNF43 is a stem‐cell E3 ligase that induces endocytosis of Wnt receptors. Nature2012;488(7413):665. CrossRef

96. HsuSY, KudoM, ChenT, et al.The three subfamilies of leucine‐rich repeat‐containing G protein‐coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol2000;14(8):1257. CrossRef

97. HsuSY, LiangSG, HsuehAJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine‐rich repeats and a G protein‐coupled, seven‐transmembrane region. Mol Endocrinol1998;12(12):1830. CrossRef

98. SnippertHJ, HaegebarthA, KasperM, et al.Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science2010;327(5971):1385. CrossRef

99. Van SchooreG, MendiveF, PochetR, et al.Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse. Histochem Cell Biol2005;124(1):35. CrossRef

100. MoritaH, MazerbourgS, BouleyDM, et al.Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol2004;24(22):9736. CrossRef

101. KatoS, MatsubaraM, MatsuoT, et al.Leucine‐rich repeat‐containing G protein‐coupled receptor‐4 (LGR4, Gpr48) is essential for renal development in mice. Nephron Exp Nephrol2006;104(2):e63. CrossRef

102. SnippertHJ, van der FlierLG, SatoT, et al.Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell2010;143(1):134. CrossRef

103. Lopez‐GarciaC, KleinAM, SimonsBD, et al.Intestinal stem cell replacement follows a pattern of neutral drift. Science2010;330(6005):822. CrossRef

104. van EsJH, SatoT, van de WeteringM, et al.Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol2012;14(10):1099. CrossRef

105. StamatakiD, HolderM, HodgettsC, et al.Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS ONE2011;6(9):e24484. CrossRef

106. BuczackiSJ, ZecchiniHI, NicholsonAM, et al.Intestinal label‐retaining cells are secretory precursors expressing Lgr5. Nature2013;495(7439):65. CrossRef

107. KinzlerKW, NilbertMC, SuLK, et al.Identification of FAP locus genes from chromosome 5q21. Science1991;253(5020):661. CrossRef

108. NishishoI, NakamuraY, MiyoshiY, et al.Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science1991;253(5020):665. CrossRef

109. GrodenJ, ThliverisA, SamowitzW, et al.Identification and characterization of the familial adenomatous polyposis coli gene. Cell1991;66(3):589. CrossRef

110. KorinekV, BarkerN, MorinPJ, et al.Constitutive transcriptional activation by a beta‐catenin‐Tcf complex in APC‐/‐ colon carcinoma. Science1997;275(5307):1784. CrossRef

111. MorinPJ, SparksAB, KorinekV, et al.Activation of beta‐catenin‐Tcf signaling in colon cancer by mutations in beta‐catenin or APC. Science1997;275(5307):1787. CrossRef

112. LiuW, DongX, MaiM, et al.Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta‐catenin/TCF signalling. Nat Genet2000;26(2):146. CrossRef

113. BassAJ, LawrenceMS, BraceLE, et al.Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A‐TCF7L2 fusion. Nat Genet2011;43(10):964. CrossRef

114. SeshagiriS, StawiskiEW, DurinckS, et al.Recurrent R‐spondin fusions in colon cancer. Nature2012;488(7413):660. CrossRef

115. KinzlerKW, VogelsteinB. Lessons from hereditary colorectal cancer. Cell1996;87(2):159. CrossRef

116. BatlleE, BacaniJ, BegthelH, et al.EphB receptor activity suppresses colorectal cancer progression. Nature2005;435(7045):1126. CrossRef

117. BarkerN, RidgwayRA, van EsJH, et al.Crypt stem cells as the cells‐of‐origin of intestinal cancer. Nature2009;457(7229):608. CrossRef

118. ZhuL, GibsonP, CurrleDS, et al.Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature2009;457(7229):603. CrossRef

119. ShmelkovSV, ButlerJM, HooperAT, et al.CD133 expression is not restricted to stem cells, and both CD133+ and CD133‐ metastatic colon cancer cells initiate tumors. J Clin Invest2008;118(6):2111.

120. BonnetD, DickJE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med1997;3(7):730. CrossRef

121. DalerbaP, DyllaSJ, ParkIK, et al.Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A2007;104(24):10158. CrossRef

122. Ricci‐VitianiL, LombardiDG, PilozziE, et al.Identification and expansion of human colon‐cancer‐initiating cells. Nature2007;445(7123):111. CrossRef

123. O'BrienCA, PollettA, GallingerS, et al.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature2007;445(7123):106. CrossRef

124. DontuG, Al‐HajjM, AbdallahWM, et al.Stem cells in normal breast development and breast cancer. Cell Prolif2003;36(Suppl 1):59. CrossRef

125. Al‐HajjM, WichaMS, Benito‐HernandezA, et al.Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A2003;100(7):3983. CrossRef

126. HuangEH, HeidtDG, LiCW, et al.Cancer stem cells: a new paradigm for understanding tumor progression and therapeutic resistance. Surgery2007;141(4):415. CrossRef

127. LiC, HeidtDG, DalerbaP, et al.Identification of pancreatic cancer stem cells. Cancer Res2007;67(3):1030. CrossRef

128. SinghSK, ClarkeID, TerasakiM, et al.Identification of a cancer stem cell in human brain tumors. Cancer Res2003;63(18):5821.

129. HillRP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res2006;66(4):1891. CrossRef

130. SchepersAG, SnippertHJ, StangeDE, et al.Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science2012;337(6095):730. CrossRef

131. KemperK, PrasetyantiPR, De LauW, et al.Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells2012;30(11):2378. CrossRef

132. Merlos‐SuarezA, BarrigaFM, JungP, et al.The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell2011;8(5):511. CrossRef

133. SnippertHJ, van EsJH, van den BornM, et al.Prominin‐1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology2009;136(7):2187e1. CrossRef