Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Gastrointestinal blood flow

1. WarwickR, WilliamsPL. Gray's Anatomy of the Human Body. 36th ed. Philadelphia: WB Saunders; 1980: 1338.

2. Casley‐SmithJR, GannonBJ. Intestinal microcirculation: spatial organization and fine structure. In: ShepherdAP, GrangerDN(eds). Physiology of the Intestinal Circulation. New York: Raven Press; 1984: 9.

3. WheatonLG, SarrMG, SchlossbergL, et al.Gross anatomy of the splanchnic vasculature. In: GrangerDN, BulkleyGB(eds). Measurement of Blood Flow: Applications to the Splanchnic Circulation. Baltimore, MD: Williams & Wilkins; 1981: 9.

4. GannonB, BrowningJ, O'BrienP, et al.Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology1984;86:866.

5. FrasherWGJr, WaylandH. A repeating modular organization of the microcirculation of cat mesentery. Microvasc Res1972;4:62. CrossRef

6. KvietysPR, WilbornWH, GrangerDN. Effects of net transmucosal volume flux on lymph flow in the canine colon. Structural‐functional relationship. Gastroenterology1981;81:1080.

7. DavisMJ. Perspective: physiological role(s) of the vascular myogenic response. Microcirculation2012;19:99. CrossRef

8. ShepherdAP. Myogenic responses of intestinal resistance and exchange vessels. Am J Physiol1977;233:H547.

9. JohnsonPC, HansonKM. Capillary filtration in the small intestine of the dog. Circ Res1966;19:766. CrossRef

10. ShepherdAP, RiedelGL. Effect of pulsatile pressure and metabolic rate on intestinal autoregulation. Am J Physiol1982;242:H769.

11. HansonKM, JohnsonPC. Pressure‐flow relationships in isolated dog colon. Am J Physiol1967;212:574.

12. KvietysPR, GrangerDN. Regulation of colonic blood flow. Fed Proc1982;41:2106.

13. KvietysPR, MillerT, GrangerDN. Intrinsic control of colonic blood flow and oxygenation. Am J Physiol1980;238:G478.

14. SuBY, ReberKM, NankervisCA, et al.Development of the myogenic response in postnatal intestine: role of PKC. Am J Physiol2003;284:G445.

15. CrissingerKD, KvietysPR, GrangerDN. Developmental intestinal vascular responses to venous pressure elevation. Am J Physiol1988;254:G658.

16. NowickiPT, MillerCE. Effect of O2 availability on intrinsic vascular response to venous pressure elevation in postnatal swine intestine. Am J Physiol1990;258:G873.

17. NankervisCA, DunawayDJ, NowickiPT. Determinants of terminal mesenteric artery resistance during the first postnatal month. Am J Physiol2001;280:G678.

18. JohnsonPC. Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circ Res1959;7:992. CrossRef

19. SunD, MessinaEJ, KaleyG, et al.Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am J Physiol1992;263:H1486.

20. GrangerDN, RichardsonPD, TaylorAE. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pflugers Arch1979;381:25. CrossRef

21. MortillaroNA, TaylorAE. Interaction of capillary and tissue forces in the cat small intestine. Circ Res1976;39:348. CrossRef

22. JohnsonPC. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ Res1965;16:294. CrossRef

23. GoreRW. Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circ Res1974;34:581. CrossRef

24. GrangerDN, GrangerHJ. Systems analysis of intestinal hemodynamics and oxygenation. Am J Physiol1983;245:G786.

25. NowickiPT, MillerCE. Regulation of capillary exchange capacity in postnatal swine intestine. Am J Physiol1993;265:G1090.

26. GrangerDN, KvietysPR, PerryMA. Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol1982;242:G570.

27. KvietysPR, GrangerDN. Relation between intestinal blood flow and oxygen uptake. Am J Physiol1982;242:G202.

28. KvietysPR, PerryMA, GrangerDN. Intestinal capillary exchange capacity and oxygen delivery‐to‐demand ratio. Am J Physiol1983;245:G635.

29. NorrisCP, BarnesGE, SmithEE, et al.Autoregulation of superior mesenteric flow in fasted and fed dogs. Am J Physiol1979;237:H174.

30. GrangerHJ, NorrisCP. Intrinsic regulation of intestinal oxygenation in the anesthetized dog. Am J Physiol1980;238:H836.

31. JacobsonED, PawlikWW. Adenosine regulation of mesenteric vasodilation. Gastroenterology1994;107:1168.

32. ProctorKG. Possible role for adenosine in local regulation of absorptive hyperemia in rat intestine. Circ Res1986;59:474. CrossRef

33. GrangerHJ, NorrisCP. Role of adenosine in local control of intestinal circulation in the dog. Circ Res1980;46:764. CrossRef

34. PawlikWW, HottensteinOD, PalenTE, et al.Adenosine modulates reactive hyperemia in rat gut. J Physiol Pharmacol1993;44:119.

35. SawmillerDR, ChouCC. Role of adenosine in postprandial and reactive hyperemia in canine jejunum. Am J Physiol1992;263:G487.

36. MianR, MarshallJM. The role of adenosine in mediating vasodilatation in mesenteric circulation of the rat in acute and chronic hypoxia. J Physiol1995;489:225. CrossRef

37. BohlenHG. Intestinal mucosal oxygenation influences absorptive hyperemia. Am J Physiol1980;239:H489.

38. BohlenHG. Intestinal tissue PO2 and microvascular responses during glucose exposure. Am J Physiol1980;238:H164.

39. Franco‐ObregonA, Lopez‐BarneoJ. Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol1996;491:511. CrossRef

40. Franco‐ObregonA, Lopez‐BarneoJ. Low PO2 inhibits calcium channel activity in arterial smooth muscle cells. Am J Physiol1996;271:H2290.

41. PohlU. Endothelial cells as part of a vascular oxygen‐sensing system: hypoxia‐induced release of autacoids. Experientia1990;46:1175. CrossRef

42. PohlU, BusseR. Hypoxia stimulates release of endothelium‐derived relaxant factor. Am J Physiol1989;256:H1595.

43. NicholsK, StainesW, KrantisA. Nitric oxide synthase distribution in the rat intestine: a histochemical analysis. Gastroenterology1993;105:1651.

44. NicholsK, StainesW, RubinS, et al.Distribution of nitric oxide synthase activity in arterioles and venules of rat and human intestine. Am J Physiol1994;267:G270.

45. BohlenHG, NaseGP. Dependence of intestinal arteriolar regulation on flow‐mediated nitric oxide formation. Am J Physiol2000;279:H2249.

46. BohlenHG, LashJM. Intestinal absorption of sodium and nitric oxide‐dependent vasodilation interact to dominate resting vascular resistance. Circ Res1996;78:231. CrossRef

47. FalconeJC, BohlenHG. EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles. Am J Physiol1990;258:H1515.

48. NankervisCA, NowickiPT. Role of nitric oxide in regulation of vascular resistance in postnatal intestine. Am J Physiol1995;268:G949.

49. FélétouM, KöhlerR, VanhouttePM. Nitric oxide: orchestrator of endothelium‐dependent responses. Ann Med2012;44:694. CrossRef

50. FörstermannU, SessaWC. Nitric oxide synthases: regulation and function. Eur Heart J2012;33:829. CrossRef

51. MichellBJ, ChenZ, TiganisT, et al.Coordinated control of endothelial nitric‐oxide synthase phosphorylation by protein kinase C and the cAMP‐dependent protein kinase. J Biol Chem2001;276:17625. CrossRef

52. BohlenHG. Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am J Physiol1998;275:H542.

53. GibbinsIL, JoblingP, MorrisJL. Functional organization of peripheral vasomotor pathways. Acta Physiol Scand2003;177:237. CrossRef

54. HolzerP. Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol2007;7:563. CrossRef

55. GustawP, PawlikWW, JacobsonED, et al.Role of capsaicin‐sensitive neurons in the control of intestinal blood flow and oxygen uptake. J Physiol Pharmacol1995;46:63.

56. FolkowB, LewisDH, LundgrenO, et al.The effect of graded vasoconstrictor fibre stimulation on the intestinal resistance and capacitance vessels. Acta Physiol Scand1964;61:445. CrossRef

57. RossG. Escape of mesenteric vessels from adrenergic and nonadrenergic vasoconstriction. Am J Physiol1971;221:1217.

58. GreenwayCV, ScottGD, ZinkJ. Sites of autoregulatory escape of blood flow in the mesenteric vascular bed. J Physiol1976;259:1. CrossRef

59. CrissingerKD, KvietysPR, GrangerDN. Autoregulatory escape from norepinephrine infusion: roles of adenosine and histamine. Am J Physiol1988;254:G560.

60. RandallMD, HileyCR. Detergent and methylene blue affect endothelium‐dependent vasorelaxation and pressure/flow relations in rat blood perfused mesenteric arterial bed. Br J Pharmacol1988;95:1081. CrossRef

61. FasthS, HultenL, NordgrenS. Adjustments of hepatic and small intestine blood flow on selective vasoconstrictor fibre stimulation. Acta Physiol Scand1980;110:343. CrossRef

62. ShepherdAP, GrangerHJ. Autoregulatory escape in the gut: a systems analysis. Gastroenterology1973;65:77.

63. ShepherdAP, PawlikW, MailmanD, et al.Effects of vasoconstrictors on intestinal vascular resistance and oxygen extraction. Am J Physiol1976;230:298.

64. ShepherdAP, RiedelGL. Intramural distribution of intestinal blood flow during sympathetic stimulation. Am J Physiol1988;255:H1091.

65. RemakG, HottensteinOD, JacobsonED. Peptidergic nerves are involved in norepinephrine‐induced vasoconstriction, but not in escape from norepinephrine. Gastroenterology1989;96:A412.

66. RemakG, HottensteinOD, JacobsonED. Sensory nerves mediate neurogenic escape in rat gut. Am J Physiol1990;258:H778.

67. RozsaZ, JacobsonED. Capsaicin‐sensitive nerves are involved in bile‐oleate‐induced intestinal hyperemia. Am J Physiol1989;256:G476.

68. RozsaZ, SharkeyKA, JancsoG, et al.Evidence for a role of capsaicin‐sensitive mucosal afferent nerves in the regulation of mesenteric blood flow in the dog. Gastroenterology1986;90:906.

69. VannerS. Mechanism of action of capsaicin on submucosal arterioles in the guinea pig ileum. Am J Physiol1993;265:G51.

70. VannerS, BoltonM. Neural circuitry of capsaicin‐sensitive afferents innervating submucosal arterioles in guinea pig ileum. Am J Physiol1996;270:G948.

71. MartinsonJ. The effect of graded vagal stimulation on gastric motility, secretion and blood flow in the cat. Acta Physiol Scand1965;65:300. CrossRef

72. TibblinS, BurnsGP, HahnloserPB, et al.The influence of vagotomy on superior mesenteric artery blood flow. Surg Gynecol Obstet1969;129:1231.

73. AndriantsitohainaR, SurprenantA. Acetylcholine released from guinea‐pig submucosal neurones dilates arterioles by releasing nitric oxide from endothelium. J Physiol1992;453:493. CrossRef

74. FurnessJB, CostaM. Types of nerves in the enteric nervous system. Neuroscience1980;5:1. CrossRef

75. VannerS. Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol2000;279:G380.

76. NeildTO, ShenKZ, SurprenantA. Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea‐pig submucosal plexus. J Physiol1990;420:247. CrossRef

77. VannerS, MacnaughtonWK. Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol Motil2004;16:39. CrossRef

78. KotechaN. Modulation of submucosal arteriolar tone by neuropeptide Y Y2 receptors in the guinea‐pig small intestine. J Auton Nerv Syst1998;70:157. CrossRef

79. VannerS, JiangMM, SurprenantA. Mucosal stimulation evokes vasodilation in submucosal arterioles by neuronal and nonneuronal mechanisms. Am J Physiol1993;264:G202.

80. RichardsonPD, GrangerDN, KvietysPR. Effects of norepinephrine, vasopressin, isoproterenol, and histamine on blood flow, oxygen uptake, and capillary filtration coefficient in the colon of the anesthetized dog. Gastroenterology1980;78:1537.

81. ShepherdAP, MailmanD, BurksTF, et al.Effects of norepinephrine and sympathetic stimulation on extraction of oxygen and 86Rb in perfused canine small bowel. Circ Res1973;33:166. CrossRef

82. PawlikW, ShepherdAP, JacobsonED. Effect of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J Clin Invest1975;56:484. CrossRef

83. PawlikWW, ShepherdAP, MailmanD, et al.Effects of dopamine and epinephrine on intestinal blood flow and oxygen uptake. Adv Exp Med Biol1976;75:511. CrossRef

84. RochaE, SilvaM, RosenbergM. The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond)1969;202:535. CrossRef

85. KvietysPR, GrangerDN. Vasoactive agents and splanchnic oxygen uptake. Am J Physiol1982;243:G1.

86. JohT, GrangerDN, BenoitJN. Endogenous vasoconstrictor tone in intestine of normal and portal hypertensive rats. Am J Physiol1993;264:H171.

87. PangCC. Effect of vasopressin antagonist and saralasin on regional blood flow following hemorrhage. Am J Physiol1983;245:H749.

88. McNeillJR. Intestinal vasoconstriction following diuretic‐induced volume depletion: role of angiotensin and vasopressin. Can J Physiol Pharmacol1974;52:829. CrossRef

89. LutzJ, BiesterJ. The reactions of the gastric vascular bed on venous or arterial pressure elevation and their comparison with values of the splenic and intestinal circulatory system. Veno‐vasomotoric reaction and autoregulation. Pflugers Arch1971;330:230. CrossRef

90. Holm‐RutiliL, PerryMA, GrangerDN. Autoregulation of gastric blood flow and oxygen uptake. Am J Physiol1981;241:G143.

91. AnzuetoL, BenoitJN, GrangerDN. A rat model for studying the intestinal circulation. Am J Physiol1984;246:G56.

92. HansonKM. Hemodynamic effects of distension of the dog small intestine. Am J Physiol1973;225:456.

93. HansonKM, JohnsonPC. Evidence for local arteriovenous reflex in intestine. J Appl Physiol1962;17:509.

94. HinshawLB. Arterial and venous pressure‐resistance relationships in perfused leg and intestine. Am J Physiol1962;203:271.

95. JohnsonPC. Autoregulation of intestinal blood flow. Am J Physiol1960;199:311.

96. JohnsonPC, HansonKM. Effect of arterial pressure on arterial and venous resistance of intestine. J Appl Physiol1962;17:503.

97. ScottJB, DabneyJM. Relation of gut motility to blood flow in the ileum of the dog. Circ Res1964;15(Suppl):234. CrossRef

98. TexterECJr, MerrillS, SchwartzM, et al.Relationship of blood flow to pressure in the intestinal vascular bed of the dog. Am J Physiol1962;202:253.

99. GrangerDN, MortillaroNA, PerryMA, et al.Autoregulation of intestinal capillary filtration rate. Am J Physiol1982;243:G475.

100. GrangerDN, KvietysPR, MailmanD, et al.Intrinsic regulation of functional blood flow and water absorption in canine colon. J Physiol1980;307:443. CrossRef

101. KvietysPR, GrangerDN. Effects of solute‐coupled fluid absorption on blood flow and oxygen uptake in the dog colon. Gastroenterology1981;81:450.

102. SatoA, SakumaI, GuttermanDD. Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol2003;285:H2345.

103. ShepherdAP. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia. Am J Physiol1978;234:E248.

104. GrangerHJ, GoodmanAH, GrangerDN. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res1976;38:379. CrossRef

105. NowickiPT, MillerCE. Autoregulation in the developing postnatal intestinal circulation. Am J Physiol1988;254:G189.

106. CrissingerKD, GrangerDN. Intestinal blood flow and oxygen consumption: responses to hemorrhage in the developing piglet. Pediatr Res1989;26:102. CrossRef

107. NowickiPT, HansenNB, MenkeJA. Intestinal blood flow and oxygen uptake in the neonatal piglet during reduced perfusion pressure. Am J Physiol1987;252:G190.

108. SvanvikJ, TyllstromJ, WallentinI. The effects of hypercapnia and hypoxia on the distribution of capillary blood flow in the denervated intestinal vascular bed. Acta Physiol Scand1968;74:543. CrossRef

109. ShepherdAP, RiedelGL. Optimal hematocrit for oxygenation of canine intestine. Circ Res1982;51:233. CrossRef

110. KielJW, ShepherdAP. Optimal hematocrit for canine gastric oxygenation. Am J Physiol1989;256:H472.

111. KielJW, RiedelGL, ShepherdAP. Effects of hemodilution on gastric and intestinal oxygenation. Am J Physiol1989;256:H171.

112. HolzmanIR, TabataB, EdelstoneDI. Effects of varying hematocrit on intestinal oxygen uptake in neonatal lambs. Am J Physiol1985;248:G432.

113. HansonKM, MooreFT. Effects of intraluminal pressure in the colon on its vascular pressure‐flow relationships. Proc Soc Exp Biol Med1969;131:373. CrossRef

114. JohnsonPC. The myogenic response. In: BohrDF, SomlyoAT, SparksHV(eds). Handbook of Physiology, Sect 2, Vol. 2. Cardiovascular System. Vascular Smooth Muscle. Bethesda, MD: American Physiological Society; 1980: 409.

115. GrangerDN, PerryMA, KvietysPR, et al.Metabolic, myogenic and hormonal factors in local regulation of alimentary tract blood flow. In: KooA, LamSK, SmajeLH(eds). Microcirculation of the Alimentary Tract. Singapore: Worl Scientific; 1983: 131.

116. WomackWA, TygartPK, MailmanD, et al.Villous motility: relationship to lymph flow and blood flow in the dog jejunum. Gastroenterology1988;94:977.

117. ShepherdAP. Intestinal blood flow autoregulation during foodstuff absorption. Am J Physiol1980;239:H156.

118. DavisMJ, GoreRW. Capillary pressures in rat intestinal muscle and mucosal villi during venous pressure elevation. Am J Physiol1985;249:H174.

119. BulkleyGB, KvietysPR, PerryMA, et al.Effects of cardiac tamponade on colonic hemodynamics and oxygen uptake. Am J Physiol1983;244:G604.

120. KvietysPR, NaviaCA, PremenAJ, et al.Quantitative assessment of the two‐component model of intestinal circulation. Am J Physiol1986;251:G446.

121. FoxJ, GaleyF, WaylandH. Action of histamine on the mesenteric microvasculature. Microvasc Res1980;19:108. CrossRef

122. OhmanU. Blood flow and oxygen consumption in the feline small intestine; responses to artificial distension and intestinal obstruction. Acta Chir Scand1976;142:329.

123. ShepherdAP, RiedelGL. Intestinal oxygen uptake versus blood flow relationship and optimal hematocrit for O2 transport. Fed Proc1981;40:491.

124. VarroV, BlahoG, CsernayL, et al.Effect of decreased local circulation of the absorptive capacity of a small‐intestine loop in the dog. Am J Dig Dis1965;10:170. CrossRef

125. HolmL, PerryMA. Role of blood flow in gastric acid secretion. Am J Physiol1988;254:G281.

126. FronekK, FronekA. Combined effect of exercise and digestion on hemodynamics in conscious dogs. Am J Physiol1970;218:555.

127. FronekK, StahlgrenLH. Systemic and regional hemodynamic changes during food intake and digestion in nonanesthetized dogs. Circ Res1968;23:687. CrossRef

128. VatnerSF, FranklinD, Van CittersRL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol1970;219:170.

129. VatnerSF, FranklinD, Van CittersRL. Coronary and visceral vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol1970;219:1380.

130. VatnerSF, PatrickTA, HigginsCB, et al.Regional circulatory adjustments to eating and digestion in conscious unrestrained primates. J Appl Physiol1974;36:524.

131. BondJH, PrentissRA, LevittMD. The effects of feeding on blood flow to the stomach, small bowel, and colon of the conscious dog. J Lab Clin Med1979;93:594.

132. BurnsGP, SchenkWGJr. Effect of digestion and exercise on intestinal blood flow and cardiac output. An experimental study in the conscious dog. Arch Surg1969;98:790. CrossRef

133. GallavanRHJr, ChouCC, KvietysPR, et al.Regional blood flow during digestion in the conscious dog. Am J Physiol1980;238:H220.

134. SnapeWJJr, WrightSH, BattleWM, et al.The gastrocolic response: evidence for a neural mechanism. Gastroenterology1979;77:1235.

135. ChouCC. Splanchnic and overall cardiovascular hemodynamics during eating and digestion. Fed Proc1983;42:1658.

136. FaraJW. Postprandial mesenteric hyperemia. In: ShepherdAP, GrangerDN(eds). Physiology of the Intestnial Circulation. New York: Raven Press; 1984: 99.

137. McCuskeyRS. Liver microcirculation. In: SheproD(ed). Microvascular Research: Biology and Pathology. London: Elsevier Academic Press; 2005: 471.

138. SomeyaN, EndoMY, FukubaY, et al.Effects of a mental task on splanchnic blood flow in fasting and postprandial conditions. Eur J Appl Physiol2010;108:1107. CrossRef

139. EdelstoneDI, HolzmanIR. Oxygen consumption by the gastrointestinal tract and liver in conscious newborn lambs. Am J Physiol1981;240:G297.

140. CrissingerKD, BurneyDL. Postprandial hemodynamics and oxygenation in developing piglet intestine. Am J Physiol1991;260:G951.

141. ChouCC, KvietysP, PostJ, et al.Constituents of chyme responsible for postprandial intestinal hyperemia. Am J Physiol1978;235:H677.

142. KvietysPR, GallavanRH, ChouCC. Contribution of bile to postprandial intestinal hyperemia. Am J Physiol1980;238:G284.

143. KvietysPR, McLendonJM, GrangerDN. Postprandial intestinal hyperemia: role of bile salts in the ileum. Am J Physiol1981;241:G469.

144. SiregarH, ChouCC. Relative contribution of fat, protein, carbohydrate, and ethanol to intestinal hyperemia. Am J Physiol1982;242:G27.

145. ChouCC, BurnsTD, HsiehCP, et al.Mechanisms of local vasodilation with hypertonic glucose in the jejunum. Surgery1972;71:380.

146. KvietysPR, WilbornWH, GrangerDN. Effect of atropine on bile‐oleic acid‐induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement. Gastroenterology1981;80:31.

147. KvietysPR, SpecianRD, GrishamMB, et al.Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. Am J Physiol1991;261:G384.

148. GrangerDN, KvietysPR, ParksDA, et al.Intestinal blood flow: relations to function. Surv Dig Dis1983;1:217. CrossRef

149. JeaysAD, LawfordPV, GillottR, et al.A framework for the modeling of gut blood flow regulation and postprandial hyperaemia. World J Gastroenterol2007;13:1393. CrossRef

150. GrangerHJ, NyhofRA. Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. Am J Physiol1982;243:G91.

151. ChouCC, NyhofRA, KvietysPR, et al.Regulation of jejunal blood flow and oxygenation during glucose and oleic acid absorption. Am J Physiol1985;249:G691.

152. SawmillerDR, ChouCC. Jejunal adenosine increases during food‐induced jejunal hyperemia. Am J Physiol1990;258:G370.

153. JodalM, LundgrenO. Countercurrent mechanisms in the mammalian gastrointestinal tract. Gastroenterology1986;91:225.

154. ZaniBG, BohlenHG. Sodium channels are required during in vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production. Am J Physiol2005;288:H89.

155. BohlenHG. Na+‐induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia. Am J Physiol1982;242:H785.

156. BohlenHG, UnthankJL. Rat intestinal lymph osmolarity during glucose and oleic acid absorption. Am J Physiol1989;257:G438.

157. UnthankJL, BohlenHG. Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am J Physiol1988;254:G389.

158. SteenbergenJM, BohlenHG. Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF. Am J Physiol1993;265:H323.

159. SteenbergenJM, LashJM, BohlenHG. Role of a lymphatic system in glucose absorption and the accompanying microvascular hyperemia. Am J Physiol1994;267:G529.

160. SmieskoV, LangDJ, JohnsonPC. Dilator response of rat mesenteric arcading arterioles to increased blood flow velocity. Am J Physiol1989;257:H1958.

161. GallavanRHJr, ChouCC. Possible mechanisms for the initiation and maintenance of postprandial intestinal hyperemia. Am J Physiol1985;249:G301.

162. ChouCC, HsiehCP, DabneyJM. Comparison of vascular effects of gastrointestinal hormones on various organs. Am J Physiol1977;232:H103.

163. PremenAJ, KvietysPR, GrangerDN. Postprandial regulation of intestinal blood flow: role of gastrointestinal hormones. Am J Physiol1985;249:G250.

164. HammerRA, MatsumotoBK, BleiAT, et al.Local effect of neurotensin on canine ileal blood flow, and its release by luminal lipid. Scand J Gastroenterol1988;23:449. CrossRef

165. CostaM, FurnessJB. The origins, pathways and terminations of neurons with VIP‐like immunoreactivity in the guinea‐pig small intestine. Neuroscience1983;8:665. CrossRef

166. GallavanRHJr, ChenMH, JoffeSN, et al.Vasoactive intestinal polypeptide, cholecystokinin, glucagon, and bile‐oleate‐induced jejunal hyperemia. Am J Physiol1985;248:G208.

167. JakobSM. Clinical review: splanchnic ischaemia. Crit Care2002;6:306. CrossRef

168. RockeyDC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis2001;21:337. CrossRef

169. IwakiriY. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int2012;32:199. CrossRef

170. SuematsuM, GodaN. Gaseous signal transduction in microcirculation. In: SheproD(ed). Microvascular Research: Biology and Pathology. London: Elsevier Academic Press; 2005: 477.

171. JakobSM. Splanchnic blood flow in low‐flow states. Anesth Analg2003;96:1129. CrossRef

172. BenoitJN, GrangerDN. Splanchnic hemodynamics in chronic portal hypertension. Semin Liver Dis1986;6:287. CrossRef

173. BenoitJN, KorthuisRJ, GrangerDN, et al.Splanchnic hemodynamics in acute and chronic portal hypertension. In: BomzonA, BlendisLM(eds). Cardiovascular Complications of Liver Disease. Boca Raton, FL: CRC Press; 1990: 179.

174. MahlTC, GroszmannRJ. Pathophysiology of portal hypertension and variceal bleeding. Surg Clin North Am1990;70:251.

175. BenoitJN, WomackWA, HernandezL, et al.“Forward” and “backward” flow mechanisms of portal hypertension. Relative contributions in the rat model of portal vein stenosis. Gastroenterology1985;89:1092.

176. IwakiriY, CadelinaG, SessaWC, et al.Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol2002;283:G1074.

177. ShahV, LyfordG, GoresG, et al.Nitric oxide in gastrointestinal health and disease. Gastroenterology2004;126:903. CrossRef

178. GroszmannRJ, AbraldesJG. Portal hypertension: from bedside to bench. J Clin Gastroenterol2005;39:S125. CrossRef

179. García‐PagánJC, Gracia‐SanchoJ, BoschJ. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J Hepatol2012;57:458. CrossRef

180. DebusES, Müller‐HülsbeckS, KölbelT, et al.Intestinal ischemia. Int J Colorectal Dis2011;26:1087. CrossRef

181. McCreadyRA, HollierLH, PairoleroPC, et al.Superior mesenteric artery embolus. South Med J1984;77:789. CrossRef

182. BoleySJ, FeinsteinFR, SammartanoR, et al.New concepts in the management of emboli of the superior mesenteric artery. Surg Gynecol Obstet1981;153:561.

183. MacCannellKL, NewtonCA, LederisK, et al.Use of selective mesenteric vasodilator peptides in experimental nonocclusive mesenteric ischemia in the dog. Gastroenterology1986;90:669.

184. ChiuCJ, McArdleAH, BrownR, et al.Intestinal mucosal lesion in low‐flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg1970;101:478. CrossRef

185. HaglundU, LundgrenO. Reactions within consecutive vascular sections of the small intestine of the cat during prolonged hypotension. Acta Physiol Scand1972;84:151. CrossRef

186. RobinsonJW, MirkovitchV. The roles on intraluminal oxygen and glucose in the protection of the rat intestinal mucosa from the effects of ischaemia. Biomedicine1977;27:60.

187. GrangerDN, SennettM, McElearneyP, et al.Effect of local arterial hypotension on cat intestinal capillary permeability. Gastroenterology1980;79:474.

188. GrogaardB, ParksDA, GrangerDN, et al.Effects of ischemia and oxygen radicals on mucosal albumin clearance in intestine. Am J Physiol1982;242:G448.

189. KinghamJG, WhorwellPJ, LoehryCA. Small intestinal permeability. 1. Effects of ischaemia and exposure to acetyl salicylate. Gut1976;17:354. CrossRef

190. ParksDA, GrogaardB, GrangerDN. Comparison of partial and complete arterial occlusion models for studying intestinal ischemia. Surgery1982;92:896.

191. BulkleyGB, KvietysPR, ParksDA, et al.Relationship of blood flow and oxygenation to ischemic injury in the canine small intestine. Gastroenterology1985;89:852.

192. MichelsNA, SiddharthP, KornblithPL, et al.Routes of collateral circulation of the gastrointestinal tract as ascertained in a idssection of 500 bodies. Int Surg1968;49:8.

193. MeyersMA. Griffiths' point: critical anastomosis at the splenic flexure. Significance in ischemia of the colon. Am J Roentgenol1976;126:77. CrossRef

194. SaegesserF, LoosliH, RobinsonJW, et al.Ischemic diseases of the large intestine. Int Surg1981;66:103.

195. PremenAJ, BanchsV, WomackWA, et al.Importance of collateral circulation in the vascularly occluded feline intestine. Gastroenterology1987;92:1215.

196. MolstadC, GrangerHJ. Collateral circulation in the splanchnic vasculature. Fed Proc1981;40:491.

197. BulkleyGB, WomackWA, DowneyJM, et al.Characterization of segmental collateral blood flow in the small intestine. Am J Physiol1985;249:G228.

198. ChoKJ, SchmidtRW, LenzJ. Effects of experimental embolization of superior mesenteric artery branch on the intestine. Invest Radiol1979;14:207.

199. AhrenC, HaglundU. Mucosal lesions in the small intestine of the cat during low flow. Acta Physiol Scand1973;88:541. CrossRef

200. ChangM, AlsaighT, KistlerEB, et al.Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS ONE2012;7:e40087. CrossRef

201. GuthPH, HirabayashiK. The effect of histamine on microvascular permeability in the muscularis externa of rat small intestine. Microvasc Res1983;25:322. CrossRef

202. HaglundU, LundholmK, LundgrenO, et al.Intestinal lysosomal enzyme activity in regional simulated shock: influence of methylprednisolone and albumin. Circ Shock1977;4:27.

203. ParksDA, GrangerDN. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl1986;548:87.

204. HernandezLA, GrishamMB, TwohigB, et al.Role of neutrophils in ischemia‐reperfusion‐induced microvascular injury. Am J Physiol1987;253:H699.

205. BounousG, HampsonLG, GurdFN. Cellular nucleotides in hemorrhagic shock: relationship of intestinal metabolic changes to hemorrhagic enteritis and the barrier function of intestinal mucosa. Ann Surg1964;160:650. CrossRef

206. BounousG, BrownRA, MulderDS, et al.Abolition of “tryptic enteritis” in the shocked dog. Creation of an experimental model for study of human shock and its sequelae. Arch Surg1965;91:371. CrossRef

207. CrowellJW. Oxygen transport in the hypotensive state. Fed Proc1970;29:1848.

208. BounousG, MenardD, De MedicisE. Role of pancreatic proteases in the pathogenesis of ischemic enteropathy. Gastroenterology1977;73:102.

209. BounousG, ProulxJ, KonokG, et al.The role of bile and pancreatic proteases in the pathogenesis of ischemic enteropathy. Int J Clin Pharmacol Biopharm1979;17:317.

210. Schmid‐SchonbeinGW, HugliTE. A new hypothesis for microvascular inflammation in shock and multiorgan failure: self‐digestion by pancreatic enzymes. Microcirculation2005;12:71. CrossRef

211. BatelliMG, Della CorteE, StirpeF. Xanthine oxidase type d (dehydrogenase) in the intestine and other organs of the rate. Biochem J1972;126:747. CrossRef

212. PickettJP, PendergrassRE, BradfordWD, et al.Localization of xanthine oxidase in rat duodenum; fixation of sections instead of blocks. Stain Technol1970;45:35.

213. GrangerDN, HernandezLA, GrishamMB. Reactive oxygen metabolites: mediatores of cell injury in the digestive system. Viewpoints Dig Dis1986;18:13.

214. FreemanBA, CrapoJD. Free radical and tissue injury. Lab Invest1982;47:412.

215. MarklundSL, WestmanNG, LundgrenE, et al.Copper‐ and zinc‐containing superoxide dismutase, manganese‐containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res1982;42:1955.

216. GrangerDN, HollwarthME, ParksDA. Ischemia‐reperfusion injury: role of oxygen‐derived free radicals. Acta Physiol Scand Suppl1986;548:47.

217. GrangerDN, McCordJM, ParksDA, et al.Xanthine oxidase inhibitors attenuate ischemia‐induced vascular permeability changes in the cat intestine. Gastroenterology1986;90:80.

218. ParksDA, GrangerDN, BulkleyGB, et al.Soybean trypsin inhibitor attenuates ischemic injury to the feline small intestine. Gastroenterology1985;89:6.

219. GrishamMB, HernandezLA, GrangerDN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol1986;251:G567.

220. SmithSM, GrishamMB, ManciEA, et al.Gastric mucosal injury in the rat. Role of iron and xanthine oxidase. Gastroenterology1987;92:950.

221. ParksDA, BulkleyGB, GrangerDN, et al.Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology1982;82:9.

222. ParksDA, GrangerDN. Ischemia‐induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol1986;250:G749.

223. ParksDA, ShahAK, GrangerDN. Oxygen radicals: effects on intestinal vascular permeability. Am J Physiol1984;247:G167.

224. ParksDA, GrangerDN. Role of oxygen radicals in gastrointestinal ischemia. In: RotilioG(ed.). Superoxide and Superoxide Dismutase in Chemistry, Biology, and Medicine. Amsterdam: Elsevier; 1986: 614.

225. WeissSJ. Tissue destruction by neutrophils. N Engl J Med1989;320:365. CrossRef

226. HensonPM, JohnstonRBJr. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest1987;79:669. CrossRef

227. ZimmermanBJ, GrishamMB, GrangerDN. Mechanisms of oxidant‐mediated microvascular injury following reperfusion of the ischemic intestin. In: SimicMG, TaylorKA, WardJF, et al. (eds). Oxygen Radicals in Biology and Medicine. New York: Plenum; 1988: 881. CrossRef

228. ZimmermanBJ, GrangerDN. Role of hydrogen peroxide, iron, and hydroxyl radicals in ischemia/reperfustion‐induced neutrophil infiltration. Physiologist1988;31:A229.

229. KurtelH, TsoP, GrangerDN. Granulocyte accumulation in postischemic intestine: role of leukocyte adhesion glycoprotein CD11/CD18. Am J Physiol1992;262:G878.

230. GrangerDN, KubesP. The microcirculation and inflammation: modulation of leukocyte‐endothelial cell adhesion. J Leukoc Biol1994;55:662.

231. GrangerDN, Schmid‐SchonbeinG. Physiology and Pathophysiology of Leukocyte Adhesion. New York: Oxford University Press; 1995.

232. GrangerDN, BenoitJN, SuzukiM, et al.Leukocyte adherence to venular endothelium during ischemia‐reperfusion. Am J Physiol1989;257:G683.

233. SalterJW, KrieglsteinCF, IssekutzAC, et al.Platelets modulate ischemia/reperfusion‐induced leukocyte recruitment in the mesenteric circulation. Am J Physiol2001;281:G1432.

234. CooperD, RussellJ, ChitmanKD, et al.Leukocyte dependence of platelet adhesion in postcapillary venules. Am J Physiol2004;286:H1895.

235. StokesKY, GrangerDN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol2012;590:1023–1034. CrossRef

236. OliverMG, SpecianRD, PerryMA, et al.Morphologic assessment of leukocyte‐endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion. Inflammation1991;15:331. CrossRef

237. SuzukiM, InauenW, KvietysPR, et al.Superoxide mediates reperfusion‐induced leukocyte‐endothelial cell interactions. Am J Physiol1989;257:H1740.

238. SuzukiM, GrishamMB, GrangerDN. Leukocyte‐endothelial cell adhesive interactions: role of xanthine oxidase‐derived oxidants. J Leukoc Biol1991;50:488.

239. SchoenbergMH, FredholmBB, HaglundU, et al.Studies on the oxygen radical mechanism involved in the small intestinal reperfusion damage. Acta Physiol Scand1985;124:581. CrossRef

240. SchoenbergMH, PochB, YounesM, et al.Involvement of neutrophils in postischaemic damage to the small intestine. Gut1991;32:905. CrossRef

241. KuroseI, WolfR, GrishamMB, et al.Modulation of ischemia/reperfusion‐induced microvascular dysfunction by nitric oxide. Circ Res1994;74:376. CrossRef

242. KubesP, SuzukiM, GrangerDN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A1991;88:4651. CrossRef

243. KubesP, KanwarS, NiuXF, et al.Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J1993;7:1293.

244. YoshidaN, GrangerDN, AndersonDC, et al.Anoxia/reoxygenation‐induced neutrophil adherence to cultured endothelial cells. Am J Physiol1992;262:H1891.

245. LewisMS, WhatleyRE, CainP, et al.Hydrogen peroxide stimulates the synthesis of platelet‐activating factor by endothelium and induces endothelial cell‐dependent neutrophil adhesion. J Clin Invest1988;82:2045. CrossRef

246. SuzukiM, AsakoH, KubesP, et al.Neutrophil‐derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res1991;42:125. CrossRef

247. GasicAC, McGuireG, KraterS, et al.Hydrogen peroxide pretreatment of perfused canine vessels induces ICAM‐1 and CD18‐dependent neutrophil adherence. Circulation1991;84:2154. CrossRef

248. CardenDL, GrangerDN. Pathophysiology of ischaemia‐reperfusion injury. J Pathol2000;190:255. CrossRef

249. KrenzM, BainesC, KalogerisT, et al.Cell Survival Programs and Ischemia/Reperfusion Hormesis, Preconditioning, and Cardioprotection, Colloquium Series on Integrated Systems Physiology: From Molecule to Function. GrangerDN, GrangerJP(eds). San Rafael, CA: Morgan & Claypool Life Sciences; 2013.

250. MallickIH, YangW, WinsletMC, et al.Ischemia–reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci2004;49:1359. CrossRef

251. VollmarB, MengerMD. Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg2011;396:13. CrossRef

252. HolznerPA, KulemannB, KuestersS, et al.Impact of remote ischemic preconditioning on wound healing in small bowel anastomoses. World J Gastroenterol2011;17:1308. CrossRef

253. Moore‐OlufemiSD, OlufemiSE, LottS, et al.Intestinal ischemic preconditioning after ischemia/reperfusion injury in rat intestine: profiling global gene expression patterns. Dig Dis Sci2010;55:1866. CrossRef

254. LiuY, KalogerisT, WangM, et al.Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia‐reperfusion‐induced mitochondrial dysfunction in rat small intestine. Am J Physiol Gastrointest Liver Physiol2012;302:G44. CrossRef

255. KrenzM, KorthuisRJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol2012;52:93. CrossRef

256. McAllisterRM. Adaptations in control of blood flow with training: splanchnic and renal blood flows. Med Sci Sports Exerc1998;30:375. CrossRef

257. van WijckK, LenaertsK, GrootjansJ, et al.Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am J Physiol Gastrointest Liver Physiol2012;303:G155. CrossRef

258. ter SteegeRWF, KolkmanJJ. Review article: the pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Aliment Pharmacol Ther2012;35:516. CrossRef

259. PetersHP, De VriesWR, Vanberge‐HenegouwenGP, et al.Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut2001;48:435. CrossRef

260. WatermanJJ, KapurR. Upper gastrointestinal issues in athletes. Curr Sports Med Rep2012;11:99. CrossRef

261. SanchezLD, CorwellB, BerkoffD. Medical problems of marathon runners. Am J Emerg Med2006;24:608. CrossRef

262. AirdWC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood2003;101:3765. CrossRef

263. KvietysPR, GrangerDN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol1997;273:G1189.

264. GrangerDN, SenchenkovaE. Inflammation and the microcirculation. In: GrangerDN, GrangerJP(eds). Integrated Systems Physiology—From Cell to Function. San Rafael, CA: Morgan & Claypool Life Sciences; 2010: 1.

265. HatoumOA, BinionDG, OttersonMF, et al.Aquired microvascular dysfunction in inflammatory bowel disease: loss of nitric‐oxide‐mediated vasodilation. Gastroenterology2003;125:58. CrossRef

266. PanesJ, GrangerDN. Leukocyte‐endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology1998;114:1066. CrossRef

267. GrangerDN, StokesKY. Differential regulation of leukocyte‐endothelial cell adhesion. Chapter 13. In: AirdWC(ed). Endothelial Cells in Health and Disease. Boca Raton, FL: Taylor and Francis; 2005: 229. CrossRef

268. VowinkelT, WoodKC, StokesKY, et al.Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol2007;293(5):G1054. CrossRef

269. YoshidaH, GrangerDN. Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation. Inflamm Bowel Dis2009;15:1245. CrossRef

270. SenchenkovaEY, KomotoS, RussellJ, et al.Interleukin‐6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis. Am J Pathol2013;183:173. CrossRef

271. MajnoG. Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol1998;153:1035. CrossRef

272. BergersG, BenjaminLE. Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer2003;3:401. CrossRef

273. DaneseS. Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: “brothers in arms”.Gut2011;60:998. CrossRef

274. KvietysPR, GrangerDN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med2012;52:556. CrossRef

275. KoutroubakisIE, TsiolakidouG, KarmirisK, KouroumalisEA. Role of angiogenesis and chronic inflammation.Inflamm Bowel Dis2006;12:515. CrossRef

276. ChidlowJHJr, ShuklaD, GrishamMB, et al.Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol2007;293:G5. CrossRef

277. DaneseS, SansM, De La MotteC, et al.Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology2006;130:2060. CrossRef

278. ScaldaferriF, VetranoS, SansM, et al.VEGF‐A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology2009;136:585. CrossRef