Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Gastrointestinal and hepatic manifestations of specific genetic disorders

1. RommensJM, IannuzziMC, KeremB, et al.Identification of the cystic fibrosis gene: chromosome walking and jumping. Science1989;245:1059. CrossRef

2. ManolioTA, CollinsFS, CoxNJ, et al.Finding the missing heritability of complex diseases. Nature2009;461:747. CrossRef

3. BarreiroLB, Quintana‐MurciL. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet2010;11:17. CrossRef

4. ZaidiS, ChoiM, WakimotoH, et al.De novo mutations in histone‐modifying genes in congenital heart disease. Nature2013;498:220. CrossRef

5. BersaglieriT, SabetiPC, PattersonN, et al.Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet2004;74:1111. CrossRef

6. PritchardJK, PickrellJK, CoopG. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol2010;20:R208. CrossRef

7. Di RienzoA. Population genetics models of common diseases. Curr Opin Genet Dev2006;16:630. CrossRef

8. Vander MolenJ, FrisseLM, FullertonSM, et al.Population genetics of CAPN10 and GPR35: implications for the evolution of type 2 diabetes variants. Am J Hum Genet2005;76:548. CrossRef

9. MirettiMM, WalshEC, KeX, et al.A high‐resolution linkage‐disequilibrium map of the human major histocompatibility complex and first generation of tag single‐nucleotide polymorphisms. Am J Hum Genet2005;76:634. CrossRef

10. ParhamP, NormanPJ, Abi‐RachedL, et al.Review: immunogenetics of human placentation. Placenta2012;33(Suppl):S71. CrossRef

11. WolofskyKT, AyiK, BranchDR, et al.ABO blood groups influence macrophage‐mediated phagocytosis of Plasmodium falciparum‐infected erythrocytes. PLoS Pathog2012;8:e1002942. CrossRef

12. GenoveseG, FriedmanDJ, RossMD, et al.Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science2010;329:841. CrossRef

13. GuarnerF, Bourdet‐SicardR, BrandtzaegP, et al.Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol2006;3:275. CrossRef

14. SuZ, GayLJ, StrangeA, et al.Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nat Genet2012;44:1131. CrossRef

15. Shaw‐SmithC. Genetic factors in esophageal atresia, tracheo‐esophageal fistula and the VACTERL association: roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature. Eur J Med Genet2010;53:6. CrossRef

16. OrmestadM, AstorgaJ, LandgrenH, et al.Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development2006;133:833. CrossRef

17. FurutaGT, LiacourasCA, CollinsMH, et al.Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology2007;133:1342. CrossRef

18. ChengE, SouzaRF, SpechlerSJ. Tissue remodeling in eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol2012;303:G1175. CrossRef

19. NoelRJ, PutnamPE, RothenbergME. Eosinophilic esophagitis. N Engl J Med2004;351:940. CrossRef

20. RothenbergME, SpergelJM, SherrillJD, et al.Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet2010;42:289. CrossRef

21. NotiM, WojnoED, KimBS, et al.Thymic stromal lymphopoietin‐elicited basophil responses promote eosinophilic esophagitis. Nat Med2013;19:1005. CrossRef

22. HirotaT, TakahashiA, KuboM, et al.Genome‐wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet2011;43:893. CrossRef

23. TorgersonDG, AmplefordEJ, ChiuGY, et al.Meta‐analysis of genome‐wide association studies of asthma in ethnically diverse North American populations. Nat Genet2011;43:887. CrossRef

24. GudbjartssonDF, BjornsdottirUS, HalapiE, et al.Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet2009;41:342. CrossRef

25. MayerleJ, den HoedCM, SchurmannC, et al.Identification of genetic loci associated with Helicobacter pylori serologic status. JAMA2013;309:1912. CrossRef

26. RaihaI, KemppainenH, KaprioJ, et al.Lifestyle, stress, and genes in peptic ulcer disease: a nationwide twin cohort study. Arch Intern Med1998;158:698. CrossRef

27. TanikawaC, UrabeY, MatsuoK, et al.A genome‐wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet2012;44:430, S1–2. CrossRef

28. SaekiN, GuJ, YoshidaT, et al.Prostate stem cell antigen: a Jekyll and Hyde molecule?Clin Cancer Res2010;16:3533. CrossRef

29. ClarkeCA, CowanWK, EdwardsJW, et al.The relationship of the ABO blood groups to duodenal and gastric ulceration. Br Med J1955;2:643. CrossRef

30. EdgrenG, HjalgrimH, RostgaardK, et al.Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am J Epidemiol2010;172:1280. CrossRef

31. HarrisJB, KhanAI, LaRocqueRC, et al.Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect Immun2005;73:7422. CrossRef

32. HoglundP, HailaS, SochaJ, et al.Mutations of the Down‐regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet1996;14:316. CrossRef

33. HoglundP, SormaalaM, HailaS, et al.Identification of seven novel mutations including the first two genomic rearrangements in SLC26A3 mutated in congenital chloride diarrhea. Hum Mutat2001;18:233. CrossRef

34. ChoiM, SchollUI, JiW, et al.Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A2009;106:19096. CrossRef

35. AichbichlerBW, ZerrCH, Santa AnaCA, et al.Proton‐pump inhibition of gastric chloride secretion in congenital chloridorrhea. N Engl J Med1997;336:106. CrossRef

36. Heinz‐ErianP, MullerT, KrabichlerB, et al.Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet2009;84:188. CrossRef

37. MullerT, WijmengaC, PhillipsAD, et al.Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology2000;119:1506. CrossRef

38. FiskerstrandT, ArshadN, HaukanesBI, et al.Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med2012;366:1586. CrossRef

39. GustafssonJK, ErmundA, AmbortD, et al.Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med2012;209:1263. CrossRef

40. JohanssonME, SjovallH, HanssonGC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol2013;10:352. CrossRef

41. AmbortD, JohanssonME, GustafssonJK, et al.Calcium and pH‐dependent packing and release of the gel‐forming MUC2 mucin. Proc Natl Acad Sci U S A2012;109:5645. CrossRef

42. FridgeJL, ConradC, GersonL, et al.Risk factors for small bowel bacterial overgrowth in cystic fibrosis. J Pediatr Gastroenterol Nutr2007;44:212. CrossRef

43. RomiH, CohenI, LandauD, et al.Meconium ileus caused by mutations in GUCY2C, encoding the CFTR‐activating guanylate cyclase 2C. Am J Hum Genet2012;90:893. CrossRef

44. DekkersJF, WiegerinckCL, de JongeHR, et al.A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med2013;19:939. CrossRef

45. WrightEM, MartinMG, TurkE. Intestinal absorption in health and disease–sugars. Best Pract Res Clin Gastroenterol2003;17:943. CrossRef

46. TreemWR. Congenital sucrase‐isomaltase deficiency. J Pediatr Gastroenterol Nutr1995;21:1. CrossRef

47. KuokkanenM, KokkonenJ, EnattahNS, et al.Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency. Am J Hum Genet2006;78:339. CrossRef

48. OldsLC, SibleyE. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum Mol Genet2003;12:2333. CrossRef

49. TishkoffSA, ReedFA, RanciaroA, et al.Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet2007;39:31. CrossRef

50. BigorgneAE, FarinHF, LemoineR, et al.TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest2014;124:328. CrossRef

51. AvitzurY, GuoC, MastropaoloLA, et al.Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology2014;146:1028. CrossRef

52. MullerT, HessMW, SchiefermeierN, et al.MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet2008;40:1163. CrossRef

53. EricksonRP, Larson‐ThomeK, ValenzuelaRK, et al.Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am J Med Genet A2008;146A:3117. CrossRef

54. RodriguezOC, CheneyRE. Human myosin‐Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci2002;115:991.

55. SatoT, MushiakeS, KatoY, et al.The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature2007;448:366. CrossRef

56. SivagnanamM, MuellerJL, LeeH, et al.Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology2008;135:429. CrossRef

57. SchnellU, KuipersJ, MuellerJL, et al.Absence of cell‐surface EpCAM in congenital tufting enteropathy. Hum Mol Genet2013;22:2566. CrossRef

58. GradwohlG, DierichA, LeMeurM, et al.neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A2000;97:1607. CrossRef

59. JennyM, UhlC, RocheC, et al.Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J2002;21:6338. CrossRef

60. WangJ, CortinaG, WuSV, et al.Mutant neurogenin‐3 in congenital malabsorptive diarrhea. N Engl J Med2006;355:270. CrossRef

61. SpenceJR, MayhewCN, RankinSA, et al.Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature2011;470:105. CrossRef

62. ZhouQ, BrownJ, KanarekA, et al.In vivo reprogramming of adult pancreatic exocrine cells to beta‐cells. Nature2008;455:627. CrossRef

63. HaasJT, WinterHS, LimE, et al.DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest2012;122:4680. CrossRef

64. ConleyME, NotarangeloLD, EtzioniA. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan‐American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol1999;93:190. CrossRef

65. HammarstromL, VorechovskyI, WebsterD. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol2000;120:225. CrossRef

66. FerreiraRC, Pan‐HammarstromQ, GrahamRR, et al.Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet2010;42:777. CrossRef

67. ChoJH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol2008;8:458. CrossRef

68. ChoJH, GregersenPK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med2011;365:1612. CrossRef

69. FasanoA, CatassiC. Clinical practice. Celiac disease. N Engl J Med2012;367:2419. CrossRef

70. TrynkaG, HuntKA, BockettNA, et al.Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet2011;43:1193. CrossRef

71. HirschfieldGM, KarlsenTH, LindorKD, et al.Primary sclerosing cholangitis. Lancet2013;382:1587. CrossRef

72. LiuJZ, HovJR, FolseraasT, et al.Dense genotyping of immune‐related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet2013;45:670. CrossRef

73. LiuJZ, AlmarriMA, GaffneyDJ, et al.Dense fine‐mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet2012;44:1137. CrossRef

74. NakamuraM, NishidaN, KawashimaM, et al.Genome‐wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet2012;91:721. CrossRef

75. RahmiogluN, AndrewT, CherkasL, et al.Epidemiology and genetic epidemiology of the liver function test proteins. PLoS ONE2009;4:e4435. CrossRef

76. YuanX, WaterworthD, PerryJR, et al.Population‐based genome‐wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet2008;83:520. CrossRef

77. ChambersJC, ZhangW, SehmiJ, et al.Genome‐wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet2011;43:1131. CrossRef

78. YamagataK, OdaN, KaisakiPJ, et al.Mutations in the hepatocyte nuclear factor‐1alpha gene in maturity‐onset diabetes of the young (MODY3). Nature1996;384:455. CrossRef

79. BluteauO, JeannotE, Bioulac‐SageP, et al.Bi‐allelic inactivation of TCF1 in hepatic adenomas. Nat Genet2002;32:312. CrossRef

80. RomeoS, KozlitinaJ, XingC, et al.Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet2008;40:1461. CrossRef

81. PullingerCR, EngC, SalenG, et al.Human cholesterol 7alpha‐hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest2002;110:109. CrossRef

82. WangJ, FreemanDJ, GrundySM, et al.Linkage between cholesterol 7alpha‐hydroxylase and high plasma low‐density lipoprotein cholesterol concentrations. J Clin Invest1998;101:1283. CrossRef

83. MarschallHU, BeuersU. When bile acids don't get amidated. Gastroenterology2013;144:870. CrossRef

84. SetchellKD, HeubiJE, ShahS, et al.Genetic defects in bile acid conjugation cause fat‐soluble vitamin deficiency. Gastroenterology2013;144:945; quiz e14. CrossRef

85. StiegerB, MeierY, MeierPJ. The bile salt export pump. Pflugers Arch2007;453:611. CrossRef

86. StrautnieksSS, ByrneJA, PawlikowskaL, et al.Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology2008;134:1203. CrossRef

87. JaraP, HierroL, Martinez‐FernandezP, et al.Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med2009;361:1359. CrossRef

88. KlompLW, VargasJC, van MilSW, et al.Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology2004;40:27. CrossRef

89. PasmantE, GoussardP, BaranesL, et al.First description of ABCB4 gene deletions in familial low phospholipid‐associated cholelithiasis and oral contraceptives‐induced cholestasis. Eur J Hum Genet2012;20:277. CrossRef

90. KatsikaD, GrjibovskiA, EinarssonC, et al.Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology2005;41:1138. CrossRef

91. BuchS, SchafmayerC, VolzkeH, et al.A genome‐wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet2007;39:995. CrossRef

92. LuK, LeeMH, HazardS, et al.Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin‐1 and sterolin‐2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet2001;69:278. CrossRef

93. HsiaoCH, ChangMH, ChenHL, et al.Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology2008;47:1233. CrossRef

94. PetersenC, HarderD, AbolaZ, et al.European biliary atresia registries: summary of a symposium. Eur J Pediatr Surg2008;18:111. CrossRef

95. Leyva‐VegaM, GerfenJ, ThielBD, et al.Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A2010;152A:886. CrossRef

96. CuiS, Leyva‐VegaM, TsaiEA, et al.Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology2013;144:1107. CrossRef

97. TurnpennyPD, EllardS. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet2012;20:251. CrossRef

98. EmerickKM, RandEB, GoldmuntzE, et al.Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology1999;29:822. CrossRef

99. OdaT, ElkahlounAG, PikeBL, et al.Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet1997;16:235. CrossRef

100. McCrightB, LozierJ, GridleyT. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development2002;129:1075.

101. Vander HeidenMG, CantleyLC, ThompsonCB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science2009;324:1029. CrossRef

102. ErezA, ShchelochkovOA, PlonSE, et al.Insights into the pathogenesis and treatment of cancer from inborn errors of metabolism. Am J Hum Genet2011;88:402. CrossRef

103. AdamsPC, ReboussinDM, BartonJC, et al.Hemochromatosis and iron‐overload screening in a racially diverse population. N Engl J Med2005;352:1769. CrossRef

104. KewMD. Pathogenesis of hepatocellular carcinoma in hereditary hemochromatosis: occurrence in noncirrhotic patients. Hepatology1990;11:1086. CrossRef

105. ZacharskiLR, ChowBK, HowesPS, et al.Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J Natl Cancer Inst2008;100:996. CrossRef

106. ToyokuniS. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci2009;100:9. CrossRef

107. FerenciP. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet2006;120:151. CrossRef

108. DaviesLP, MacintyreG, CoxDW. New mutations in the Wilson disease gene, ATP7B: implications for molecular testing. Genet Test2008;12:139. CrossRef

109. SchilskyML, AlaA. Genetic testing for Wilson disease: availability and utility. Curr Gastroenterol Rep2010;12:57. CrossRef

110. WalsheJM, WaldenstromE, SamsV, et al.Abdominal malignancies in patients with Wilson's disease. QJM2003;96:657. CrossRef

111. QuadriM, FedericoA, ZhaoT, et al.Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet2012;90:467. CrossRef

112. TuschlK, ClaytonPT, GospeSMJr, et al.Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet2012;90:457. CrossRef

113. DrenthJP, te MorscheRH, SminkR, et al.Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet2003;33:345. CrossRef

114. JanssenMJ, WaandersE, Te MorscheRH, et al.Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology2011;141:2056. CrossRef

115. DavilaS, FuruL, GharaviAG, et al.Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet2004;36:575. CrossRef

116. FedelesSV, TianX, GallagherAR, et al.A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin‐1 as the central determinant of cyst formation. Nat Genet2011;43:639. CrossRef

117. Lango AllenH, FlanaganSE, Shaw‐SmithC, et al.GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet2011;44:20. CrossRef

118. MorriseyEE, TangZ, SigristK, et al.GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev1998;12:3579. CrossRef

119. WattAJ, ZhaoR, LiJ, et al.Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol2007;7:37. CrossRef

120. YuL, WynnJ, MaL, et al.De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet2012;49:650. CrossRef

121. YuL, WynnJ, CheungYH, et al.Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Hum Genet2013;132:285. CrossRef

122. Richards‐YutzJ, GrantK, ChaoEC, et al.Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum Genet2010;128:61. CrossRef

123. McAllisterKA, GroggKM, JohnsonDW, et al.Endoglin, a TGF‐beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet1994;8:345. CrossRef

124. GallioneCJ, RepettoGM, LegiusE, et al.A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet2004;363:852. CrossRef

125. Wooderchak‐DonahueWL, McDonaldJ, O'FallonB, et al.BMP9 mutations cause a vascular‐anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet2013;93:530. CrossRef