Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Positron emission tomography

1. Ter‐PogossianM. Positron emission tomography instrumentation. In: ReivichM, AlaviA(eds). Positron Emission Tomography. New York: A.R. Liss; 1985: xxii. 478 p.

2. HoffmanEJ, PhelpsPM. Positron emission tomography: principles and quantitation. In: PhelpsME, MazziottaJC, SchelbertHR(eds). Positron Emission Tomography and Autoradiography. New York: Raven Press; 1986: 237.

3. NewigerH. Principles of positron emission tomography. In: BenderH, PalmedoH, BiersacHJ, et al. (eds). Atlas of Clinical PET in Oncology. Berlin: Springer‐Verlag; 2000.

4. MettlerFA, GuiberteauMJ. Positron emission tomography. In: ●●●●(ed). Essentials of Nuclear Medicine. Amsterdam: Elsevier Health Sciences; 2011: ●●.

5. BeyerT, TownsendDW, BrunT, et al.A combined PET/CT scanner for clinical oncology. J Nucl Med2000;41:1369.

6. TownsendDW. Combined positron emission tomography‐computed tomography: the historical perspective. Semin Ultrasound CT MR2008;29:232. CrossRef

7. MittraE, QuonA. Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am2009;47:147. CrossRef

8. ContiM. Improving time resolution in time‐of‐flight PET. Nucl Instrum Methods Phys Res A2011;648:S194. CrossRef

9. PichlerBJ, KolbA, NageleT, et al.PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med2010;51:333. CrossRef

10. JudenhoferMS, WehrlHF, NewportDF, et al.Simultaneous PET‐MRI: a new approach for functional and morphological imaging. Nat Med2008;14:459. CrossRef

11. Martinez‐MollerA, SouvatzoglouM, DelsoG, et al.Tissue classification as a potential approach for attenuation correction in whole‐body PET/MRI: evaluation with PET/CT data. J Nucl Med2009;50:520. CrossRef

12. HofmannM, SteinkeF, ScheelV, et al.MRI‐based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med2008;49:1875. CrossRef

13. HofmannM, PichlerB, ScholkopfB, et al.Towards quantitative PET/MRI: a review of MR‐based attenuation correction techniques. Eur J Nucl Med Mol Imaging2009;36(Suppl 1):S93. CrossRef

14. MaziereM, MaziereB. PET tracers for brain scanning. In: MurrayIP, EllPJ(eds). Nuclear Medicine in Clinical Diagnosis and Treatment. London: Churchill Livingstone; 1998: 563.

15. WolfAP, FowlerJS. Positron emitter‐labeled radiotracers: chemical considerations. In: ReivichM, AlaviA(eds). Positron Emission Tomography. New York: A.R. Liss; 1985: 63.

16. FantiS, FarsadM, MansiL. PET‐CT beyond FDG: a quick guide to image interpretation. Berlin: Springer; 2010. CrossRef

17. WarburgO. On the origin of cancer cells. Science1956;123:309. CrossRef

18. SokoloffL, ReivichM, KennedyC, et al.The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem1977;28:897. CrossRef

19. FDG poistron emission tomography decision memorandom (CAG‐00065). Administration HCF, 2000.

20. SilbersteinEB. Prevalence of adverse reactions to positron emitting radiopharmaceuticals in nuclear medicine. Pharmacopeia Committee of the Society of Nuclear Medicine. J Nucl Med1998;39:2190.

21. ●●●●. Decision memo for positron emission tomography (CAG‐00065R2). Services CfMaM, 2013.

22. JudenhoferMS, CherrySR. Applications for preclinical PET/MRI. Semin Nucl Med2013;43:19. CrossRef

23. TownsendDW, BeyerT. A combined PET/CT scanner: the path to true image fusion. Br J Radiol2002;75(Spec No):S24. CrossRef

24. KimJH, CzerninJ, Allen‐AuerbachMS, et al.Comparison between 18F‐FDG PET, in‐line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med2005;46:587.

25. OsmanMM, CohadeC, NakamotoY, et al.Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med2003;44:240.

26. SoykaJD, Veit‐HaibachP, StrobelK, et al.Staging pathways in recurrent colorectal carcinoma: is contrast‐enhanced 18F‐FDG PET/CT the diagnostic tool of choice?J Nucl Med2008;49:354. CrossRef

27. PelosiE, DeandreisD. The role of 18F‐fluoro‐deoxy‐glucose positron emission tomography (FDG‐PET) in the management of patients with colorectal cancer. Eur J Surg Oncol2007;33:1. CrossRef

28. EstevesFP, SchusterDM, HalkarRK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin Nucl Med2006;36:169. CrossRef

29. YonekuraY, BenuaRS, BrillAB, et al.Increased accumulation of 2‐deoxy‐2‐[18F]Fluoro‐D‐glucose in liver metastases from colon carcinoma. J Nucl Med1982;23:1133.

30. StraussLG, CloriusJH, SchlagP, et al.Recurrence of colorectal tumors: PET evaluation. Radiology1989;170:329. CrossRef

31. SchlagP, LehnerB, StraussLG, et al.Scar or recurrent rectal cancer. Positron emission tomography is more helpful for diagnosis than immunoscintigraphy. Arch Surg1989;124:197. CrossRef

32. WhitefordMH, WhitefordHM, YeeLF, et al.Usefulness of FDG‐PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum2000;43:759, discussion 767‐770. CrossRef

33. VitolaJV, DelbekeD, SandlerMP, et al.Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg1996;171:21. CrossRef

34. ValkPE, Abella‐ColumnaE, HasemanMK, et al.Whole‐body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg1999;134:503, discussion 511‐503. CrossRef

35. SchiepersC, PenninckxF, De VadderN, et al.Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol1995;21:517. CrossRef

36. RuhlmannJ, SchomburgA, BenderH, et al.Fluorodeoxyglucose whole‐body positron emission tomography in colorectal cancer patients studied in routine daily practice. Dis Colon Rectum1997;40:1195. CrossRef

37. OgunbiyiOA, FlanaganFL, DehdashtiF, et al.Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol1997;4:613. CrossRef

38. LaiDT, FulhamM, StephenMS, et al.The role of whole‐body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg1996;131:703. CrossRef

39. KeoganMT, LoweVJ, BakerME, et al.Local recurrence of rectal cancer: evaluation with F‐18 fluorodeoxyglucose PET imaging. Abdom Imaging1997;22:332. CrossRef

40. ImdahlA, ReinhardtMJ, NitzscheEU, et al.Impact of 18F‐FDG‐positron emission tomography for decision making in colorectal cancer recurrences. Langenbecks Arch Surg2000;385:129. CrossRef

41. FlanaganFL, DehdashtiF, OgunbiyiOA, et al.Utility of FDG‐PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg1998;227:319. CrossRef

42. FlamenP, StroobantsS, Van CutsemE, et al.Additional value of whole‐body positron emission tomography with fluorine‐18‐2‐fluoro‐2‐deoxy‐D‐glucose in recurrent colorectal cancer. J Clin Oncol1999;17:894.

43. DelbekeD, VitolaJV, SandlerMP, et al.Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med1997;38:1196.

44. BipatS, van LeeuwenMS, ComansEF, et al.Colorectal liver metastases: CT, MR imaging, and PET for diagnosis–meta‐analysis. Radiology2005;237:123. CrossRef

45. WieringB, KrabbePF, JagerGJ, et al.The impact of fluor‐18‐deoxyglucose‐positron emission tomography in the management of colorectal liver metastases. Cancer2005;104:2658. CrossRef

46. ZasadnyKR, WahlRL. Standardized uptake values of normal tissues at PET with 2‐[fluorine‐18]‐fluoro‐2‐deoxy‐D‐glucose: variations with body weight and a method for correction. Radiology1993;189:847. CrossRef

47. VotrubovaJ, BelohlavekO, JaruskovaM, et al.The role of FDG‐PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging2006;33:779. CrossRef

48. Even‐SapirE, ParagY, LermanH, et al.Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology2004;232:815. CrossRef

49. KamelIR, CohadeC, NeymanE, et al.Incremental value of CT in PET/CT of patients with colorectal carcinoma. Abdom Imaging2004;29:663. CrossRef

50. LibuttiSK, AlexanderHRJr, ChoykeP, et al.A prospective study of 2‐[18F] fluoro‐2‐deoxy‐D‐glucose/positron emission tomography scan, 99mTc‐labeled arcitumomab (CEA‐scan), and blind second‐look laparotomy for detecting colon cancer recurrence in patients with increasing carcinoembryonic antigen levels. Ann Surg Oncol2001;8:779. CrossRef

51. LiuFY, ChenJS, ChangchienCR, et al.Utility of 2‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography in managing patients of colorectal cancer with unexplained carcinoembryonic antigen elevation at different levels. Dis Colon Rectum2005;48:1900. CrossRef

52. BohmB, VothM, GeogheganJ, et al.Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol2004;130:266. CrossRef

53. WeberWA, AvrilN, SchwaigerM. Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol1999;175:356. CrossRef

54. FongY, SaldingerPF, AkhurstT, et al.Utility of 18F‐FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg1999;178:282. CrossRef

55. TruantS, HugloD, HebbarM, et al.Prospective evaluation of the impact of [18F]fluoro‐2‐deoxy‐D‐glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg2005;92:362. CrossRef

56. TopalB, FlamenP, AertsR, et al.Clinical value of whole‐body emission tomography in potentially curable colorectal liver metastases. Eur J Surg Oncol2001;27:175. CrossRef

57. Abdel‐NabiH, DoerrRJ, LamonicaDM, et al.Staging of primary colorectal carcinomas with fluorine‐18 fluorodeoxyglucose whole‐body PET: correlation with histopathologic and CT findings. Radiology1998;206:755. CrossRef

58. EngelmannBE, LoftA, KjaerA, et al.Positron emission tomography/computed tomography for optimized colon cancer staging and follow up. Scand J Gastroenterol2013;49:191. CrossRef

59. VeitP, KuhleC, BeyerT, et al.Whole body positron emission tomography/computed tomography (PET/CT) tumour staging with integrated PET/CT colonography: technical feasibility and first experiences in patients with colorectal cancer. Gut2006;55:68. CrossRef

60. van KouwenMC, NagengastFM, JansenJB, et al.2‐(18F)‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography detects clinical relevant adenomas of the colon: a prospective study. J Clin Oncol2005;23:3713. CrossRef

61. FriedlandS, SoetiknoR, CarlisleM, et al.18‐Fluorodeoxyglucose positron emission tomography has limited sensitivity for colonic adenoma and early stage colon cancer. Gastrointest Endosc2005;61:395. CrossRef

62. HuebnerRH, ParkKC, ShepherdJE, et al.A meta‐analysis of the literature for whole‐body FDG PET detection of recurrent colorectal cancer. J Nucl Med2000;41:1177.

63. DesaiDC, ZervosEE, ArnoldMW, et al.Positron emission tomography affects surgical management in recurrent colorectal cancer patients. Ann Surg Oncol2003;10:59. CrossRef

64. SelznerM, HanyTF, WildbrettP, et al.Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver?Ann Surg2004;240:1027, discussion 1035‐1026. CrossRef

65. LonneuxM, ReffadAM, DetryR, et al.FDG‐PET improves the staging and selection of patients with recurrent colorectal cancer. Eur J Nucl Med Mol Imaging2002;29:915. CrossRef

66. KhanS, TanYM, JohnA, et al.An audit of fusion CT‐PET in the management of colorectal liver metastases. Eur J Surg Oncol2006;32:564. CrossRef

67. FernandezFG, DrebinJA, LinehanDC, et al.Five‐year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F‐18 fluorodeoxyglucose (FDG‐PET). Ann Surg2004;240:438, discussion 447‐450. CrossRef

68. BenderH, BangardN, MettenN, et al.Possible role of FDG‐PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma1999;18:87. CrossRef

69. FindlayM, YoungH, CunninghamD, et al.Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol1996;14:700.

70. GuillemJG, MooreHG, AkhurstT, et al.Sequential preoperative fluorodeoxyglucose‐positron emission tomography assessment of response to preoperative chemoradiation: a means for determining longterm outcomes of rectal cancer. J Am Coll Surg2004;199:1. CrossRef

71. GuillemJG, Puig‐La CalleJJr, AkhurstT, et al.Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18‐fluorodeoxyglucose positron emission tomography. Dis Colon Rectum2000;43:18. CrossRef

72. CapirciC, RubelloD, PasiniF, et al.The role of dual‐time combined 18‐fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery. Int J Radiat Oncol Biol Phys2009;74:1461. CrossRef

73. HaberkornU, StraussLG, DimitrakopoulouA, et al.PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med1991;32:1485.

74. EngenhartR, KimmigBN, StraussLG, et al.Therapy monitoring of presacral recurrences after high‐dose irradiation: value of PET, CT, CEA and pain score. Strahlenther Onkol1992;168:203.

75. GoshenE, DavidsonT, ZwasST, et al.PET/CT in the evaluation of response to treatment of liver metastases from colorectal cancer with bevacizumab and irinotecan. Technol Cancer Res Treat2006;5:37. CrossRef

76. Dimitrakopoulou‐StraussA, StraussLG, BurgerC, et al.Prognostic aspects of 18F‐FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med2004;45:1480.

77. KisselJ, BrixG, BellemannME, et al.Pharmacokinetic analysis of 5‐[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res1997;57:3415.

78. MoehlerM, Dimitrakopoulou‐StraussA, GutzlerF, et al.18F‐labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5‐fluorouracil. Cancer1998;83:245. CrossRef

79. ChoiJY, LeeKH, ShimYM, et al.Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med2000;41:808.

80. LuketichJD, FriedmanDM, WeigelTL, et al.Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg1999;68:1133, discussion 1136‐1137. CrossRef

81. KoleAC, PlukkerJT, NiewegOE, et al.Positron emission tomography for staging of oesophageal and gastroesophageal malignancy. Br J Cancer1998;78:521. CrossRef

82. BlockMI, PattersonGA, SundaresanRS, et al.Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg1997;64:770, discussion 776‐777. CrossRef

83. FlanaganFL, DehdashtiF, SiegelBA, et al.Staging of esophageal cancer with 18F‐fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol1997;168:417. CrossRef

84. FlamenP, LerutA, Van CutsemE, et al.Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol2000;18:3202.

85. KatoH, MiyazakiT, NakajimaM, et al.The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer2005;103:148. CrossRef

86. KneistW, SchreckenbergerM, BartensteinP, et al.Positron emission tomography for staging esophageal cancer: does it lead to a different therapeutic approach?World J Surg2003;27:1105. CrossRef

87. HeerenPA, JagerPL, BongaertsF, et al.Detection of distant metastases in esophageal cancer with (18)F‐FDG PET. J Nucl Med2004;45:980.

88. LeongT, EverittC, YuenK, et al.A prospective study to evaluate the impact of FDG‐PET on CT‐based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol2006;78:254. CrossRef

89. HongD, LunagomezS, KimEE, et al.Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma. Cancer2005;104:1620. CrossRef

90. FlamenP, Van CutsemE, LerutA, et al.Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol2002;13:361. CrossRef

91. SmythEC, ShahMA. Role of (1)(8)F 2‐fluoro‐2‐deoxyglucose positron emission tomography in upper gastrointestinal malignancies. World J Gastroenterol2011;17:5059. CrossRef

92. OmlooJM, SloofGW, BoellaardR, et al.Importance of fluorodeoxyglucose‐positron emission tomography (FDG‐PET) and endoscopic ultrasonography parameters in predicting survival following surgery for esophageal cancer. Endoscopy2008;40:464. CrossRef

93. van WestreenenHL, PlukkerJT, CobbenDC, et al.Prognostic value of the standardized uptake value in esophageal cancer. AJR Am J Roentgenol2005;185:436. CrossRef

94. KatoH, NakajimaM, SohdaM, et al.The clinical application of (18)F‐fluorodeoxyglucose positron emission tomography to predict survival in patients with operable esophageal cancer. Cancer2009;115:3196. CrossRef

95. RizkNP, TangL, AdusumilliPS, et al.Predictive value of initial PET‐SUVmax in patients with locally advanced esophageal and gastroesophageal junction adenocarcinoma. J Thorac Oncol2009;4:875. CrossRef

96. ZimnyM, BaresR, FassJ, et al.Fluorine‐18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med1997;24:678.

97. van KouwenMC, JansenJB, van GoorH, et al.FDG‐PET is able to detect pancreatic carcinoma in chronic pancreatitis. Eur J Nucl Med Mol Imaging2005;32:399. CrossRef

98. StollfussJC, GlattingG, FriessH, et al.2‐(fluorine‐18)‐fluoro‐2‐deoxy‐D‐glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology1995;195:339. CrossRef

99. RoseDM, DelbekeD, BeauchampRD, et al.18Fluorodeoxyglucose‐positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg1999;229:729, discussion 737‐728. CrossRef

100. KeoganMT, TylerD, ClarkL, et al.Diagnosis of pancreatic carcinoma: role of FDG PET. AJR Am J Roentgenol1998;171:1565. CrossRef

101. KatoT, FukatsuH, ItoK, et al.Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem. Eur J Nucl Med1995;22:32. CrossRef

102. InokumaT, TamakiN, TorizukaT, et al.Evaluation of pancreatic tumors with positron emission tomography and F‐18 fluorodeoxyglucose: comparison with CT and US. Radiology1995;195:345. CrossRef

103. ImdahlA, NitzscheE, KrautmannF, et al.Evaluation of positron emission tomography with 2‐[18F]fluoro‐2‐deoxy‐D‐glucose for the differentiation of chronic pancreatitis and pancreatic cancer. Br J Surg1999;86:194. CrossRef

104. FriessH, LanghansJ, EbertM, et al.Diagnosis of pancreatic cancer by 2[18F]‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography. Gut1995;36:771. CrossRef

105. van KouwenMC, OyenWJ, NagengastFM, et al.FDG‐PET scanning in the diagnosis of gastrointestinal cancers. Scand J Gastroenterol Suppl2004;85. CrossRef

106. ZimnyM, BuellU. 18FDG‐positron emission tomography in pancreatic cancer. Ann Oncol1999;10(Suppl 4):28. CrossRef

107. SpertiC, PasqualiC, ChierichettiF, et al.18‐Fluorodeoxyglucose positron emission tomography in predicting survival of patients with pancreatic carcinoma. J Gastrointest Surg2003;7:953, discussion 959‐960. CrossRef

108. NakataB, NishimuraS, IshikawaT, et al.Prognostic predictive value of 18F‐fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int J Oncol2001;19:53.

109. DiederichsCG, StaibL, VogelJ, et al.Values and limitations of 18F‐fluorodeoxyglucose‐positron‐emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas2000;20:109. CrossRef

110. ShrevePD. Focal fluorine‐18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med1998;25:259. CrossRef

111. MertzHR, SechopoulosP, DelbekeD, et al.EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc2000;52:367. CrossRef

112. BorbathI, Van BeersBE, LonneuxM, et al.Preoperative assessment of pancreatic tumors using magnetic resonance imaging, endoscopic ultrasonography, positron emission tomography and laparoscopy. Pancreatology2005;5:553. CrossRef

113. StrobelK, HeinrichS, BhureU, et al.Contrast‐enhanced 18F‐FDG PET/CT: 1‐stop‐shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med2008;49:1408. CrossRef

114. KitajimaK, MurakamiK, YamasakiE, et al.Performance of integrated FDG‐PET/contrast‐enhanced CT in the diagnosis of recurrent pancreatic cancer: comparison with integrated FDG‐PET/non‐contrast‐enhanced CT and enhanced CT. Mol Imaging Biol2010;12:452. CrossRef

115. FarmaJM, SantillanAA, MelisM, et al.PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. Ann Surg Oncol2008;15:2465. CrossRef

116. NakamotoY, HigashiT, SakaharaH, et al.Contribution of PET in the detection of liver metastases from pancreatic tumours. Clin Radiol1999;54:248. CrossRef

117. MaiseyNR, WebbA, FluxGD, et al.FDG‐PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer2000;83:287. CrossRef

118. FrankeC, KlapdorR, MeyerhoffK, et al.18‐FDG positron emission tomography of the pancreas: diagnostic benefit in the follow‐up of pancreatic carcinoma. Anticancer Res1999;19:2437.

119. SpertiC, PasqualiC, ChierichettiF, et al.Value of 18‐fluorodeoxyglucose positron emission tomography in the management of patients with cystic tumors of the pancreas. Ann Surg2001;234:675. CrossRef

120. TeefeySA, HildeboldtCC, DehdashtiF, et al.Detection of primary hepatic malignancy in liver transplant candidates: prospective comparison of CT, MR imaging, US, and PET. Radiology2003;226:533. CrossRef

121. TrojanJ, SchroederO, RaedleJ, et al.Fluorine‐18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol1999;94:3314. CrossRef

122. KhanMA, CombsCS, BruntEM, et al.Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol2000;32:792. CrossRef

123. IwataY, ShiomiS, SasakiN, et al.Clinical usefulness of positron emission tomography with fluorine‐18‐fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med2000;14:121. CrossRef

124. TorizukaT, TamakiN, InokumaT, et al.In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG‐PET. J Nucl Med1995;36:1811.

125. ZimmermanRL, BurkeM, YoungNA, et al.Diagnostic utility of Glut‐1 and CA 15‐3 in discriminating adenocarcinoma from hepatocellular carcinoma in liver tumors biopsied by fine‐needle aspiration. Cancer2002;96:53. CrossRef

126. LeeJD, YunM, LeeJM, et al.Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F‐fluorodeoxyglucose uptake pattern on positron emission tomography. Eur J Nucl Med Mol Imaging2004;31:1621. CrossRef

127. TorizukaT, TamakiN, InokumaT, et al.Value of fluorine‐18‐FDG‐PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med1994;35:1965.

128. ChenYK, HsiehDS, LiaoCS, et al.Utility of FDG‐PET for investigating unexplained serum AFP elevation in patients with suspected hepatocellular carcinoma recurrence. Anticancer Res2005;25:4719.

129. VeitP, AntochG, StergarH, et al.Detection of residual tumor after radiofrequency ablation of liver metastasis with dual‐modality PET/CT: initial results. Eur Radiol2006;16:80. CrossRef

130. DonckierV, Van LaethemJL, GoldmanS, et al.[F‐18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol2003;84:215. CrossRef

131. WongCY, SalemR, RamanS, et al.Evaluating 90Y‐glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging2002;29:815. CrossRef

132. KinkelK, LuY, BothM, et al.Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta‐analysis. Radiology2002;224:748. CrossRef

133. HustinxR, PaulusP, JacquetN, et al.Clinical evaluation of whole‐body 18F‐fluorodeoxyglucose positron emission tomography in the detection of liver metastases. Ann Oncol1998;9:397. CrossRef

134. CollinsBT, LoweVJ, DunphyFR. Correlation of CT‐guided fine‐needle aspiration biopsy of the liver with fluoride‐18 fluorodeoxyglucose positron emission tomography in the assessment of metastatic hepatic abnormalities. Diagn Cytopathol1999;21:39. CrossRef

135. DelbekeD, MartinWH, SandlerMP, et al.Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg1998;133:510, discussion 515‐516. CrossRef

136. AndersonCD, RiceMH, PinsonCW, et al.Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg2004;8:90. CrossRef

137. PetrowskyH, WildbrettP, HusarikDB, et al.Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol2006;45:43. CrossRef

138. KimJY, KimMH, LeeTY, et al.Clinical role of 18F‐FDG PET‐CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol2008;103:1145. CrossRef

139. ReubiJC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev2003;24:389. CrossRef

140. BinderupT, KniggeU, LoftA, et al.Functional imaging of neuroendocrine tumors: a head‐to‐head comparison of somatostatin receptor scintigraphy, 123I‐MIBG scintigraphy, and 18F‐FDG PET. J Nucl Med2010;51:704. CrossRef

141. VirgoliniI, AmbrosiniV, BomanjiJB, et al.Procedure guidelines for PET/CT tumour imaging with 68Ga‐DOTA‐conjugated peptides: 68Ga‐DOTA‐TOC, 68Ga‐DOTA‐NOC, 68Ga‐DOTA‐TATE. Eur J Nucl Med Mol Imaging2010;37:2004. CrossRef

142. AmbrosiniV, CampanaD, BodeiL, et al.68Ga‐DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med2010;51:669. CrossRef

143. HofmanMS, KongG, NeelsOC, et al.High management impact of Ga‐68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol2012;56:40. CrossRef

144. NaswaN, SharmaP, KumarA, et al.Gallium‐68‐DOTA‐NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: a prospective single‐center study. AJR Am J Roentgenol2011;197:1221. CrossRef

145. KayaniI, BomanjiJB, GrovesA, et al.Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga‐DOTATATE (DOTA‐DPhe1,Tyr3‐octreotate) and 18F‐FDG. Cancer2008;112:2447. CrossRef

146. GabrielM, DecristoforoC, KendlerD, et al.68Ga‐DOTA‐Tyr3‐octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med2007;48:508. CrossRef

147. SchillaciO. Somatostatin receptor imaging in patients with neuroendocrine tumors: not only SPECT?J Nucl Med2007;48:498. CrossRef

148. SahaniDV, BonaffiniPA, Fernandez‐Del CastilloC, et al.Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology2013;266:38. CrossRef

149. KirshbomPM, KheraniAR, OnaitisMW, et al.Carcinoids of unknown origin: comparative analysis with foregut, midgut, and hindgut carcinoids. Surgery1998;124:1063. CrossRef

150. SrirajaskanthanR, KayaniI, QuigleyAM, et al.The role of 68Ga‐DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In‐DTPA‐octreotide scintigraphy. J Nucl Med2010;51:875. CrossRef

151. OrleforsH, SundinA, AhlstromH, et al.Positron emission tomography with 5‐hydroxytryprophan in neuroendocrine tumors. J Clin Oncol1998;16:2534.

152. OrleforsH, SundinA, GarskeU, et al.Whole‐body (11)C‐5‐hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab2005;90:3392. CrossRef

153. KoopmansKP, NeelsOC, KemaIP, et al.Improved staging of patients with carcinoid and islet cell tumors with 18F‐dihydroxy‐phenyl‐alanine and 11C‐5‐hydroxy‐tryptophan positron emission tomography. J Clin Oncol2008;26:1489. CrossRef

154. OrleforsH, SundinA, ErikssonB, et al.PET‐Guided Surgery – High Correlation between Positron Emission Tomography with 11C‐5‐Hydroxytryptophane (5‐HTP) and Surgical Findings in Abdominal Neuroendocrine Tumours. Cancers (Basel)2012;4:100. CrossRef

155. JagerPL, ChirakalR, MarriottCJ, et al.6‐L‐18F‐fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med2008;49:573. CrossRef

156. HoegerleS, AltehoeferC, GhanemN, et al.Whole‐body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology2001;220:373. CrossRef

157. BechererA, SzaboM, KaranikasG, et al.Imaging of advanced neuroendocrine tumors with (18)F‐FDOPA PET. J Nucl Med2004;45:1161.

158. YakemchukVN, JagerPL, ChirakalR, et al.PET/CT using (1)(8)F‐FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl Med Commun2012;33:322. CrossRef

159. MontraversF, GrahekD, KerrouK, et al.Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors?J Nucl Med2006;47:1455.

160. GoldsteinD, TanBS, RossleighM, et al.Gastrointestinal stromal tumours: correlation of F‐FDG gamma camera‐based coincidence positron emission tomography with CT for the assessment of treatment response–an AGITG study. Oncology2005;69:326. CrossRef

161. JagerPL, GietemaJA, van der GraafWT. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun2004;25:433. CrossRef

162. Van den AbbeeleAD, BadawiRD. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer2002;38(Suppl 5):S60. CrossRef

163. HeinickeT, WardelmannE, SauerbruchT, et al.Very early detection of response to imatinib mesylate therapy of gastrointestinal stromal tumours using 18fluoro‐deoxyglucose‐positron emission tomography. Anticancer Res2005;25:4591.

164. Van den AbbeeleAD, GatsonisC, de VriesDJ, et al.ACRIN 6665/RTOG 0132 phase II trial of neoadjuvant imatinib mesylate for operable malignant gastrointestinal stromal tumor: monitoring with 18F‐FDG PET and correlation with genotype and GLUT4 expression. J Nucl Med2012;53:567. CrossRef

165. GayedI, VuT, IyerR, et al.The role of 18F‐FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med2004;45:17.

166. ChenJ, CheongJH, YunMJ, et al.Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer2005;103:2383. CrossRef

167. KimSK, KangKW, LeeJS, et al.Assessment of lymph node metastases using 18F‐FDG PET in patients with advanced gastric cancer. Eur J Nucl Med Mol Imaging2006;33:148. CrossRef

168. MochikiE, KuwanoH, KatohH, et al.Evaluation of 18F‐2‐deoxy‐2‐fluoro‐D‐glucose positron emission tomography for gastric cancer. World J Surg2004;28:247. CrossRef

169. YoshiokaT, YamaguchiK, KubotaK, et al.Evaluation of 18F‐FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med2003;44:690.

170. YunM, LimJS, NohSH, et al.Lymph node staging of gastric cancer using (18)F‐FDG PET: a comparison study with CT. J Nucl Med2005;46:1582.

171. LimJS, YunMJ, KimMJ, et al.CT and PET in stomach cancer: preoperative staging and monitoring of response to therapy. Radiographics2006;26:143. CrossRef

172. OttK, FinkU, BeckerK, et al.Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol2003;21:4604. CrossRef

173. van KouwenMC, DrenthJP, OyenWJ, et al.[18F]Fluoro‐2‐deoxy‐D‐glucose positron emission tomography detects gastric carcinoma in an early stage in an asymptomatic E‐cadherin mutation carrier. Clin Cancer Res2004;10:6456. CrossRef

174. Al‐ShemmariSH, SajnaniKP, AmeenRM, et al.Primary gastrointestinal non‐Hodgkin's lymphoma: treatment outcome. Clin Lymphoma2003;4:99. CrossRef

175. KoniarisLG, DrugasG, KatzmanPJ, et al.Management of gastrointestinal lymphoma. J Am Coll Surg2003;197:127. CrossRef

176. PhongkitkarunS, VaravithyaV, KazamaT, et al.Lymphomatous involvement of gastrointestinal tract: evaluation by positron emission tomography with (18)F‐fluorodeoxyglucose. World J Gastroenterol2005;11:7284. CrossRef

177. LofflerM, WeckesserM, FranziusC, et al.High diagnostic value of 18F‐FDG‐PET in pediatric patients with chronic inflammatory bowel disease. Ann N Y Acad Sci2006;1072:379. CrossRef

178. NeurathMF, VehlingD, SchunkK, et al.Noninvasive assessment of Crohn's disease activity: a comparison of 18F‐fluorodeoxyglucose positron emission tomography, hydromagnetic resonance imaging, and granulocyte scintigraphy with labeled antibodies. Am J Gastroenterol2002;97:1978. CrossRef

179. BettenworthD, ReuterS, HermannS, et al.Translational 18F‐FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J Nucl Med2013;54:748. CrossRef

180. LouisE, AncionG, ColardA, et al.Noninvasive assessment of Crohn's disease intestinal lesions with (18)F‐FDG PET/CT. J Nucl Med2007;48:1053. CrossRef

181. SpierBJ, PerlmanSB, JaskowiakCJ, et al.PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol2010;12:85. CrossRef

182. ZhuangH, HickesonM, ChackoTK, et al.Incidental detection of colon cancer by FDG positron emission tomography in patients examined for pulmonary nodules. Clin Nucl Med2002;27:628. CrossRef

183. KamelEM, ThumshirnM, TruningerK, et al.Significance of incidental 18F‐FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med2004;45:1804.

184. van WestreenenHL, WesterterpM, JagerPL, et al.Synchronous primary neoplasms detected on 18F‐FDG PET in staging of patients with esophageal cancer. J Nucl Med2005;46:1321.

185. IsraelO, YefremovN, Bar‐ShalomR, et al.PET/CT detection of unexpected gastrointestinal foci of 18F‐FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med2005;46:758.

186. ShieldsAF, GriersonJR, DohmenBM, et al.Imaging proliferation in vivo with [F‐18]FLT and positron emission tomography. Nat Med1998;4:1334. CrossRef

187. YamamotoY, KameyamaR, IzuishiK, et al.Detection of colorectal cancer using (1)(8)F‐FLT PET: comparison with (1)(8)F‐FDG PET. Nucl Med Commun2009;30:841. CrossRef

188. FrancisDL, FreemanA, VisvikisD, et al.In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut2003;52:1602. CrossRef

189. HerrmannK, OttK, BuckAK, et al.Imaging gastric cancer with PET and the radiotracers 18F‐FLT and 18F‐FDG: a comparative analysis. J Nucl Med2007;48:1945. CrossRef

190. OttK, HerrmannK, SchusterT, et al.Molecular imaging of proliferation and glucose utilization: utility for monitoring response and prognosis after neoadjuvant therapy in locally advanced gastric cancer. Ann Surg Oncol2011;18:3316. CrossRef

191. JonesT. The imaging science of positron emission tomography. Eur J Nucl Med1996;23:807. CrossRef

192. PhelpsME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A2000;97:9226. CrossRef