Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

The innervation of the gastrointestinal tract

1. BaylissWM, StarlingEH. The movements and innervation of the small intestine. J Physiol (Lond)1899;24:99. CrossRef

2. FurnessJB, JohnsonPJ, PompoloS, et al.Evidence that enteric motility reflexes can be initiated through entirely intrinsic mechanisms in the guinea‐pig small intestine. Neurogastroenterol Motil1995;7:89. CrossRef

3. ChristofiFL, WunderlichJ, YuJG, et al.Mechanically evoked reflex electrogenic chloride secretion in rat distal colon is triggered by endogenous nucleotides acting at P2Y1, P2Y2, and P2Y4 receptors. J Comp Neurol2004;469:16. CrossRef

4. PattonD, O'ReillyM, VannerS. Sensory peptide neurotransmitters mediating mucosal and distension evoked neural vasodilator reflexes in guinea pig ileum. Am J Physiol2005;289:G785. CrossRef

5. FurnessJB. The Enteric Nervous System. Oxford: Blackwell; 2006.

6. GershonMD, RatcliffeEM. Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung's disease and other ongenital dysmotilities. Semin Pediatr Surg2004;13:224. CrossRef

7. SwensonO. Hirschsprung's disease: a review. Pediatrics2002;109:914. CrossRef

8. CamilleriM. Dysmotility of the small intestine and colon. In: YamadaT(ed). Textbook of Gastroenterology. Philadelphia: Lippincott, Williams & Wilkins; 2003: 1486.

9. PavlovJP. The Work of the Digestive Glands. London: Charles Griffin & Co. Ltd; 1902.

10. DragstedtLR. Vagotomy for gastroduodenal ulcer. Ann Surg1945;122:973. CrossRef

11. CannonWB, NewtonHF, BrightEM, et al.Some aspects of the physiology of animals surviving complete exclusion of sympathetic nerve impulses. Am J Physiol1929;89:84.

12. Denny‐BrownD, RobertsonEG. An investigation of the nervous control of defecation. Brain1935;58:256. CrossRef

13. GunterbergB, KewenterJ, PetersénI, et al.Anorectal function after major resections of the sacrum with bilateral or unilateral sacrifice of sacral nerves. Br J Surg1976;63:546. CrossRef

14. TravagliRA, HermannGE, BrowningKN, et al.Brainstem circuits regulating gastric function. Annu Rev Physiol2006;68:279. CrossRef

15. JeanA. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev2001;81:929.

16. StöhrP. Mikroskopische Studien zur Innervation des Magen‐Darmkanales. Z Zellforsch1930;12:66. CrossRef

17. Llewellyn‐SmithIJ, CostaM, FurnessJB, et al.Structure of the tertiary component of the myenteric plexus in the guinea‐pig small intestine. Cell Tissue Res1993;272:509. CrossRef

18. FurnessJB, ClercN, LomaxAEG, et al.Shapes and projections of tertiary plexus neurons of the guinea‐pig small intestine. Cell Tissue Res2000;300:383. CrossRef

19. LiPL. Neue Beobachtungen über die Struktur des Zirkulärmuskels im Dünndarm bei Wirbeltieren. Z Anat Entwicklungsgesch1937;107:212. CrossRef

20. GabellaG. Special muscle cells and their innervation in the mammalian small intestine. Cell Tissue Res1974;153:63. CrossRef

21. CajalSRY. Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine; 1911.

22. ThunebergL. Interstitial cells of Cajal. In: SchultzGS, WoodJD, RaunerBB(eds). Handbook of Physiology: The Gastrointestinal System. Bethesda, NY: American Physiological Society; 1989: 349.

23. FurnessJB, LloydKCK, SterniniC, et al.Projections of substance P, vasoactive intestinal peptide and tyrosine hydroxylase immunoreactive nerve fibres in the canine intestine, with special reference to the innervation of the circular muscle. Arch Histol Cytol1990;53:129. CrossRef

24. SynnerstadI, EkbladE, SundlerF, et al.Gastric mucosal smooth muscles may explain oscillations in glandular pressure: role of vasoactive intestinal peptide. Gastroenterology1998;114:284. CrossRef

25. BrookesSJH, SteelePA, CostaM. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea‐pig small intestine. Cell Tissue Res1991;263:471. CrossRef

26. PowleyTL, SpauldingRA, HaglofSA. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol2011;519:644. CrossRef

27. GabellaG, TriggP. Size of neurons and glial cells in the enteric ganglia of mice, guinea‐pigs, rabbits and sheep. J Neurocytol1984;13:49. CrossRef

28. IrwinDA. The anatomy of Auerbach's plexus. Am J Anat1931;49:141. CrossRef

29. FurnessJB, CostaM. The Enteric Nervous System. Edinburgh: Churchill Livingstone; 1987.

30. ScheuermannDW, StachW, TimmermansJP, et al.Neuron specific enolase and S‐100 protein immunohistochemistry for defining the structure and topographical relationship of the different enteric nerve plexuses in the small intestine of the pig. Cell Tissue Res1989;256:65. CrossRef

31. TimmermansJ‐P, HensJ, AdriaensenD. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec2001;262:71. CrossRef

32. ThomsenL, PearsonGT, LarsenEH, et al.Electrophysiological properties of neurones in the internal and external submucous plexuses of newborn pig small intestine. J Physiol (Lond)1997;498:773. CrossRef

33. EkbladE, EkmanR, HåkansonR, et al.Projections of peptide‐containing neurons in rat colon. Neuroscience1988;27:655. CrossRef

34. PorterAJ, WattchowDA, BrookesSJ, et al.Projections of nitric oxide synthase and vasoactive intestinal polypeptide‐reactive submucosal neurons in the human colon. J Gastroenterol Hepatol1999;14:1180. CrossRef

35. OwyangC, WilliamsJA. Pancreatic secretion. In: YamadaT(ed). Textbook of Gastroenterology. Philadelphia: Lippincott, Williams & Wilkins; 2003: 340.

36. PadburyRTA, FurnessJB, BakerRA, et al.Projections of nerve cells from the duodenum to the sphincter of Oddi and gallbladder of the Australian possum. Gastroenterology1993;104:130.

37. MaweGM, GershonMD. Structure, afferent innervation, and transmitter content of ganglia of the guinea pig gallbladder: relationship to the enteric nervous system. J Comp Neurol1989;283:374. CrossRef

38. KirchgessnerAL, GershonMD. Innervation of the pancreas by neurons in the gut. J Neurosci1990;10:1626.

39. BrehmerA. Structure of enteric neurons. Adv Anat2006;186:1.

40. DogielAS. Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol Leipzig1899;Anat Abt Jg 1899:130.

41. FurnessJB, BornsteinJC, TrussellDC. Shapes of nerve cells in the myenteric plexus of the guinea‐pig small intestine revealed by the intracellular injection of dye. Cell Tissue Res1988;254:561. CrossRef

42. StachW. A revised morphological classification of neurons in the enteric nervous system. In: SingerMV, GoebellH(eds). Nerves and the Gastrointestinal Tract. Lancaster, U.K.: MTP Press; 1989: 29.

43. CostaM, BrookesSJH, SteelePA, et al.Neurochemical classification of myenteric neurons in the guinea‐pig ileum. Neuroscience1996;75:949. CrossRef

44. ShimizuY, MatsuyamaH, ShiinaT, et al.Tachykinins and their functions in the gastrointestinal tract. Cell Mol Life Sci2008;65:295. CrossRef

45. WoodJD. Application of classification schemes to the enteric nervous system. J Auton Nerv Syst1994;48:17. CrossRef

46. BornsteinJC, FurnessJB, KunzeWAA. Electrophysiological characterization of myenteric neurons: how do classification schemes relate?J Auton Nerv Syst1994;48:1. CrossRef

47. MaweGM, StrongDS, SharkeyKA. Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil2009;21:481. CrossRef

48. HirstGDS, HolmanME, SpenceI. Two types of neurones in the myenteric plexus of duodenum in the guinea‐pig. J Physiol (Lond)1974;236:303. CrossRef

49. TamuraK. Morphology of electrophysiologically identified myenteric neurons in the guinea pig rectum. Am J Physiol1992;262:G545.

50. SchemannM, WoodJD. Electrical behaviour of myenteric neurones in the gastric corpus of the guinea‐pig. J Physiol (Lond)1989;417:501. CrossRef

51. SchemannM, WoodJD. Synaptic behaviour of myenteric neurones in the gastric corpus of the guinea‐pig. J Physiol (Lond)1989;417:519. CrossRef

52. MaoY, WangB, KunzeW. Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol2006;96:998. CrossRef

53. GalliganJJ, LepardKJ, SchneiderDA, et al.Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst2000;81:97. CrossRef

54. GalliganJJ, BertrandPP. ATP mediates fast synaptic potentials in enteric neurons. J Neurosci1994;14:7563.

55. LepardKJ, GalliganJJ. Analysis of fast synaptic pathways in myenteric plexus of guinea pig ileum. Am J Physiol1999;276:G529.

56. NurgaliK, FurnessJB, StebbingMJ. Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience2003;116:335. CrossRef

57. ZhouX, GalliganJJ. Synaptic activation and properties of 5‐hydroxytryptamine3 receptors in myenteric neurons of guinea pig intestine. J Pharmacol Exp Ther1999;290:803.

58. MoritaK, NorthRA. Significance of slow synaptic potentials for transmission of excitation in guinea‐pig myenteric plexus. Neuroscience1985;14:661. CrossRef

59. KunzeWAA, BertrandPP, FurnessJB, et al.Influence of the mucosa on the excitability of myenteric neurons. Neuroscience1997;76:619. CrossRef

60. MonroRL, BornsteinJC, BertrandPP. Slow excitatory post‐synaptic potentials in myenteric AH neurons of the guinea‐pig ileum are reduced by the 5‐hydroxytrytamine7 receptor antagonist SB 269970. Neuroscience2005;134:975. CrossRef

61. ThorntonPDJ, BornsteinJC. Slow excitatory synaptic potentials evoked by distension in myenteric descending interneurones of guinea‐pig ileum. J Physiol (Lond)2002;539:589. CrossRef

62. GwynneRM, BornsteinJC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol2007;5:1. CrossRef

63. WoodJD, MayerCJ. Intracellular study of electrical activity of Auerbach's plexus in guinea‐pig small intestine. Pflügers Arch Eur J Physiol1978;374:265. CrossRef

64. JohnsonSM, KatayamaY, NorthRA. Slow synaptic potentials in neurones of the myenteric plexus. J Physiol (Lond)1980;301:505. CrossRef

65. BornsteinJC, CostaM, FurnessJB. Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea‐pig small intestine. J Physiol (Lond)1986;381:465. CrossRef

66. HirstGDS, McKirdyHC. Synaptic potentials recorded from neurones of the submucous plexus of guinea‐pig small intestine. J Physiol (Lond)1975;249:369. CrossRef

67. SurprenantA. Slow excitatory synaptic potentials recorded from neurones of guinea‐pig submucous plexus. J Physiol (Lond)1984;351:343. CrossRef

68. MiharaS, KatayamaY, NishiS. Slow postsynaptic potentials on neurones of submucous plexus of guinea‐pig caecum and their mimicry by noradrenaline and various peptides. Neuroscience1985;16:1057. CrossRef

69. FrielingT, CookeHJ, WoodJD. Synaptic transmission in submucosal ganglia of guinea pig distal colon. Am J Physiol1991;260:G842.

70. LomaxAE, BertrandPP, FurnessJB. Electrophysiological characteristics distinguish three classes of neuron in submucosal ganglia of the guinea‐pig distal colon. Neuroscience2001;103:245. CrossRef

71. HuH‐Z, GaoN, ZhuMX, et al.Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea‐pig enteric nervous system. J Physiol (Lond)2003;550:493. CrossRef

72. MonroRL, BertrandPP, BornsteinJC. ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J Physiol (Lond)2004;556:571. CrossRef

73. BornsteinJC, CostaM, FurnessJB. Intrinsic and extrinsic inhibitory synaptic inputs to submucous neurones of the guinea‐pig small intestine. J Physiol (Lond)1988;398:371. CrossRef

74. FoongJPP, ParryLJ, GwynneRM, et al.5‐HT1A, SST1, and SST2 receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am J Physiol2010;298:G384.

75. HirstGDS, McKirdyHC. Presynaptic inhibition at a mammalian peripheral synapse?Nature1974;250:430. CrossRef

76. EdwardsFR, HirstGDS, SilinskyEM. Interaction between inhibitory and excitatory synaptic potentials at a peripheral neurone. J Physiol (Lond)1976;259:647. CrossRef

77. MoritaK, NorthRA, TokimasaT. Muscarinic presynaptic inhibition of synaptic transmission in myenteric plexus of guinea‐pig ileum. J Physiol (Lond)1982;333:141. CrossRef

78. SandersKM, WardSM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol1992;262:G379.

79. ZhangY, LomaxA, PatersonWG. P2Y1 receptors mediate apamin‐sensitive and ‐insensitive inhibitory junction potentials in murine colonic circular smooth muscle. J Pharmacol Exp Ther2010;333:602. CrossRef

80. DurninL, HwangSJ, WardSM, et al.Adenosine 5'‐diphosphate‐ribose is a neural regulator in primate and murine large intestine along with β‐NAD. J Physiol (Lond)2012;590:1921. CrossRef

81. GoyalRK, SullivanMP, ChaudhuryA. Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil2013;25:203. CrossRef

82. MashimoH, KjellinA, GoyalRK. Gastric stasis in neuronal nitric oxide synthase‐deficient knockout mice. Gastroenterology2000;119:766. CrossRef

83. MicciM‐A, KahrigKM, SimmonsRS, et al.Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase‐deficient mice. Gastroenterology2005;129:1817. CrossRef

84. NeuhuberWL, WörlJ, BerthoudHR, et al.NADPH‐diaphorase‐positive nerve fibers associated with motor endplates in the rat eosphagus: new evidence for co‐innervation of striated muscle by enteric neurons. Cell Tissue Res1994;276:23. CrossRef

85. KuramotoH, KatoY, SakamotoH, et al.Galanin‐containing nerve terminals that are involved in a dual innervation of the striated muscles of the rat esophagus. Brain Res1996;734:186. CrossRef

86. WörlJ, MayerB, NeuhuberWL. Spatial relationships of enteric nerve fibers to vagal motor terminals and the sarcolemma in motor endplates of the rat esophagus: a confocal laser scanning and electron‐microscopic study. Cell Tissue Res1997;287:113.

87. WuM, MajewskiM, WojtkiewiczJ, et al.Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences. Cell Tissue Res2003;311:289.

88. IngelfingerFJ. Esophageal motility. Physiol Rev1958;38:533.

89. IzumiN, MatsuyamaH, KoM, et al.Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J Physiol (Lond)2003;551:287. CrossRef

90. BreuerC, NeuhuberWL, WörlJ. Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric coinnervation during maturation of vagal myoneural contacts. J Comp Neurol2004;475:47. CrossRef

91. KeastJR. Mucosal innervation and control of water and ion transport in the intestine. Rev Physiol Biochem Pharmacol1987;109:1.

92. CookeHJ, ReddixRA. Neural regulation of intestinal electrolyte transport. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 3rd ed. New York: Raven Press; 1994: 2083.

93. SchwartzCJ, KimbergDV, SheerinHE, et al.Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J Clin Invest1974;54:536. CrossRef

94. BanksMR, FarthingMJG, RobberechtP, et al.Antisecretory actions of a novel vasoactive intestinal polypeptide (VIP) antagonist in human and rat small intestine. Br J Pharmacol2005;144:994. CrossRef

95. NeildTO, ShenKZ, SurprenantA. Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea‐pig submucosal plexus. J Physiol (Lond)1990;420:247. CrossRef

96. VannerS, SurprenantA. Cholinergic and noncholinergic submucosal neurons dilate arterioles in guinea pig colon. Am J Physiol1991;261:G136.

97. KotechaN, NeildTO. Vasodilatation and smooth muscle membrane potential changes in arterioles from the guinea‐pig small intestine. J Physiol (Lond)1995;482:661. CrossRef

98. LiZS, Fox ThrelkeldJET, FurnessJB. Innervation of intestinal arteries by axons with immunoreactivity for the vesicular acetylcholine transporter VAChT. J Anat1998;192:107. CrossRef

99. JodalM, LundgrenO. Neurohormonal control of gastrointestinal blood flow. In: WoodJD(ed). Handbook of Physiology: The Gastrointestinal System. Washington, DC: American Physiological Society; 1989: 1667.

100. ThiefinG, TachéY, LeungFW, et al.Central nervous system action of thyrotropin‐releasing hormone to increase gastric mucosal blood flow in the rat. Gastroenterology1989;97:405.

101. ItoS, OhgaA, OhtaT. Gastric relaxation and vasoactive intestinal peptide output in response to reflex vagal stimulation in the dog. J Physiol (Lond)1988;404:683. CrossRef

102. SchubertML, PeuraDA. Control of gastric acid secretion in health and disease. Gastroenterology2008;134:1842. CrossRef

103. PoitrasP, TrudelL, MillerP, et al.Regulation of motilin release: studies with ex vivo perfused canine jejunum. Am J Physiol1997;272:G4.

104. OnagaT, ZabielskiR, KatoS. Multiple regulation of peptide YY secretion in the digestive tract. Peptides2002;23:279. CrossRef

105. BrubakerPL, AniniY. Direct and indirect mechanisms regulating secretion of glucagon‐like peptide‐1 and glucagon‐like peptide‐2. Can J Physiol Pharmacol2003;81:1005. CrossRef

106. SandovalD, Dunki‐JacobsA, SorrellJ, et al.Impact of intestinal electrical stimulation on nutrient‐induced GLP‐1 secretion invivo. Neurogastroenterol Motil2013;25:700. CrossRef

107. DefaweuxV, DorbanG, AntoineN, et al.Neuroimmune connections in jejunal and ileal Peyer's patches at various bovine ages: potential sites for prion neuroinvasion. Cell Tissue Res2007;329:35. CrossRef

108. MaB, von WasielewskiR, LindenmaierW, et al.Immmunohistochemical study of the blood and lymphatic vasculature and the innervation of mouse gut and gut‐associated lymphoid tissue. Anat Histol Embryol2007;36:62. CrossRef

109. VulchanovaL, CaseyMA, CrabbGW, et al.Anatomical function for enteric neuroimmune interactions in peyer's patches. J Neuroimmunol2007;185:64. CrossRef

110. ChiocchettiR, MazzuoliG, AlbaneseV, et al.Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?Cell Tissue Res2008;332:185. CrossRef

111. RenziD, PellegriniB, TonelliF, et al.(neurokinin‐1) and neurokinin A (neurokinin‐2) receptor gene and protein expression in the healthy and inflamed human intestine. Am J Pathol2000;157:1511. CrossRef

112. GrossKJ, PothoulakisC. Role of neuropeptides in inflammatory bowel disease. Inflamm Bowel Dis2007;13:918. CrossRef

113. IchikawaS, EdaN, UchinoS. Close association of peptidergic nerves with lymphocytes in canine and monkey ileal villi. Okajimas Folia Anat Jpn1992;69:199. CrossRef

114. SteadRH, DixonMF, BramwellNH, et al.Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology1989;97:575.

115. MargolskeeRF, DyerJ, KokrashviliZ, et al.T1R3 and gustducin in gut sense sugars to regulate expression of Na+‐glucose cotransporter 1. Proc Natl Acad Sci U S A2007;104:15075. CrossRef

116. GerspachAC, SteinertRE, SchönenbergerL, et al.The role of the gut sweet taste receptor in regulating GLP‐1, PYY, and CCK release in humans. Am J Physiol2011;301:E317.

117. GorboulevV, SchürmannA, VallonV, et al.Na+‐D‐glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose‐dependent incretin secretion. Diabetes2012;61:187. CrossRef

118. BaldassanoS, LiuS, QuM‐H, et al.Glucagon‐like peptide‐2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol2009;297:G800. CrossRef

119. Shirazi‐BeecheySP, MoranAW, BatchelorDJ, et al.Influences of food constituents on gut health glucose sensing and signalling; regulation of intestinal glucose transport. Proc Nutr Soc2011;70:185. CrossRef

120. SigaletDL, WallaceL, De HeuvalE, et al.The effects of glucagon‐like peptide 2 on enteric neurons in intestinal inflammation. Neurogastroenterol Motil2010;22:1318. CrossRef

121. StearnsAT, BalakrishnanA, RhoadsDB, et al.Rapid upregulation of sodium‐glucosetransporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg2010;251:865. CrossRef

122. PortburyAL, PompoloS, FurnessJB, et al.Cholinergic, somatostatin‐immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure, connections and projections. J Anat1995;187:303.

123. YoungHM, FurnessJB. Ultrastructural examination of the targets of serotonin‐immunoreactive descending interneurons in the guinea‐pig small intestine. J Comp Neurol1995;356:101. CrossRef

124. MannPT, SouthwellBR, DingYQ, et al.Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell Tissue Res1997;289:1. CrossRef

125. PompoloS, FurnessJB. Quantitative analysis of inputs to somatostatin immunoreactive descending interneurons in the myenteric plexus of the guinea‐pig small intestine. Cell Tissue Res1998;294:219. CrossRef

126. StebbingMJ, BornsteinJC. Electrophysiological mapping of fast excitatory synaptic inputs to morphologically and chemically characterised myenteric neurons of guinea‐pig small intestine. Neuroscience1996;73:1017. CrossRef

127. MonroRL, BertrandPP, BornsteinJC. ATP and 5‐HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea‐pig ileum. Neurogastroenterol Motil2002;14:255. CrossRef

128. MallF. A study of the intestinal contraction. Johns Hopkins Hosp Rep1896;1:37.

129. LangleyJN, MagnusR. Some observations of the movements of the intestine before and after degenerative section of the mesenteric nerves. J Physiol (Lond)1905;33:34. CrossRef

130. KirchgessnerAL, TamirH, GershonMD. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity‐induced expression of Fos immunoreactivity. J Neurosci1992;12:235.

131. KirchgessnerAL, LiuMT, GershonMD. In situ identification and visualization of neurons that mediate enteric and enteropancreatic reflexes. J Comp Neurol1996;371:270. CrossRef

132. KunzeWAA, BornsteinJC, FurnessJB. Identification of sensory nerve cells in a peripheral organ, the intestine of a mammal. Neuroscience1995;66:1. CrossRef

133. BertrandPP, KunzeWAA, BornsteinJC, et al.Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am J Physiol1997;273:G422.

134. SharkeyKA, LomaxAEG, BertrandPP, et al.Electrophysiology, shape and chemistry of intestinofugal neurons projecting from guinea pig distal colon to inferior mesenteric ganglia. Gastroenterology1998;115:909. CrossRef

135. SpencerNJ, SmithTK. Mechanosensory S‐neurons rather than AH‐neurons appear to generate a rhythmic motor pattern in guinea‐pig distal colon. J Physiol (Lond)2004;558.2:577. CrossRef

136. SmithTK, SpencerNJ, HennigGW, et al.Recent advances in enteric neurobiology: mechanosensitive interneurons. Neurogastroenterol Motil2007;19:869. CrossRef

137. SpencerNJ, DicksonEJ, HennigGW, et al.Sensory elements within the circular muscle are essential for mechanotransduction of ongoing peristaltic reflex activity in guinea‐pig distal colon. J Physiol (Lond)2006;576.2:519. CrossRef

138. MazzuoliG, SchemannM. Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J Physiol (Lond)2009;587:4681. CrossRef

139. MazzuoliG, MazzoniM, AlbaneseV, et al.Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum. Anat Rec2007;290:1480. CrossRef

140. MazzuoliG, SchemannM. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS ONE2012;7:e39887. CrossRef

141. GrundyD. Vagal control of gastrointestinal function. Baillieres Clin Gastroenterol1988;2:23. CrossRef

142. ChangHY, MashimoH, GoyalRK. Musings on the wanderer: what's new in our understanding of vago‐vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol2003;284:G357.

143. MooreBA, KimD, VannerS. Neural pathways regulating Brunner's gland secretion in guinea pig duodenum in vitro. Am J Physiol2000;279:G910.

144. BerthoudHR, BlackshawLA, BrookesJH, et al.Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil2004;16:28. CrossRef

145. WangFB, PowleyTL. Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol2000;421:302. CrossRef

146. BrookesSJH, SpencerNJ, CostaM, et al.Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol2013;10:286. CrossRef

147. ZagorodnyukVP, ChenBN, BrookesSJH. Intraganglionic laminar endings are mechano‐transduction sites of vagal tension receptors in the guinea‐pig stomach. J Physiol (Lond)2001;534:255. CrossRef

148. PaintalAS. A study of gastric stretch receptors. Their role in the peripheral mechanism of satiation of hunger and thirst. J Physiol (Lond)1954;126:255. CrossRef

149. IggoA. Tension receptors in the stomach and the urinary bladder. J Physiol (Lond)1955;128:593. CrossRef

150. BerthoudHR, PowleyTL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol1992;319:261. CrossRef

151. PowleyTL, PhillipsRJ. Vagal intramuscular array afferents form complexes with interstitial cells of cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs?Neuroscience2011;186:188. CrossRef

152. RaybouldHE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci2010;153:41. CrossRef

153. FurnessJB, RiveraLR, ChoH‐J, et al.The gut as a sensory organ. Nat Rev Gastroenterol Hepatol2013;10:729. CrossRef

154. le RouxCW, NearyNM, HalseyTJ, et al.Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab2005;90:4521. CrossRef

155. ClarkeGD, DavisonJS. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J Physiol (Lond)1978;284:55. CrossRef

156. LeekBF. Abdominal and pelvic visceral receptors. Br Med Bull1977;33:163.

157. PageAJ, MartinCM, BlackshawLA. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol2002;87:2095.

158. KellyKA. Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am J Physiol1980;239:G71.

159. BeckerJM, KellyKA. Antral control of canine gastric emptying of solids. Am J Physiol1983;8:G334.

160. PageAJ, SlatteryJA, MilteC, et al.Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am J Physiol2007;292:G1376.

161. KentishSJ, O'DonnellTA, IsaacsNJ, et al.Gastric vagal afferent modulation by leptin is influenced by food intake status. J Physiol (Lond)2012.

162. RaybouldHE. Mechanisms of CCK signaling from gut to brain. Curr Opin Pharmacol2007;7:570. CrossRef

163. BrookesSJ, DinningPG, GladmanMA. Neuroanatomy and physiology of colorectal function and defaecation: from basic science to human clinical studies. Neurogastroenterol Motil2009;21:9. CrossRef

164. KylohM, NicholasS, ZagorodnyukVP, et al.Identification of the visceral pain pathway activated by noxious colorectal distension in mice. Front Neurosci2011;5:1. CrossRef

165. BiegerD, HopkinsDA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol1987;262:546. CrossRef

166. ReynoldsRPE, El‐SharkawyTY, DiamantNE. Lower esophageal sphincter function in the cat: role of central innervation assessed by transient vagal blockade. Am J Physiol1984;246:G666.

167. DiamantNE, AkinA. Effect of gastric contraction of the lower esophageal sphincter. Gastroenterology1972;63:38.

168. FranziSJ, MartinCJ, CoxMR, et al.Response of canine lower esophageal sphincter to gastric distension. Am J Physiol1990;259:G380.

169. KellyKA. Motility of the stomach and gastroduodenal junction. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract. New York: Raven Press; 1981: 393.

170. KellingG. Untersuchungen über die Spannungszustände der Bauchwand, der Magen‐ und der Darmwand. Z Biol1903;44:161.

171. CannonWB, LiebCW. The receptive relaxation of the stomach. Am J Physiol1911;29:267.

172. AbrahamssonH, JanssonG. Elicitation of reflex vagal relaxation of the stomach from pharynx and esophagus in the cat. Acta Physiol Scand1969;77:172. CrossRef

173. AbrahamssonH, JanssonG. Vago‐vagal gastro‐gastric relaxation in the cat. Acta Physiol Scand1973;88:289. CrossRef

174. WilburBG, KellyKA. Effect of proximal gastric, complete gastric, and truncal vagotomy on canine gastric electric activity, motility and emptying. Ann Surg1973;178:295. CrossRef

175. AbrahamssonH. Vagal relaxation of the stomach induced from the gastric antrum. Acta Physiol Scand1973;89:406. CrossRef

176. AndrewsPLR, DavisCJ, BinghamS, et al.The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol1990;68:325. CrossRef

177. CannonWB. The Mechanical Factors of Digestion. London: Edward Arnold; 1911.

178. CannonWB. Peristalsis, segmentation and the myenteric reflex. Am J Physiol1912;30:114.

179. AndrewsPLR, GrundyD, ScratcherdT. Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol (Lond)1980;298:79. CrossRef

180. MooreFD, ChapmanWP, SchulzMD, et al.Transdiaphragmatic resection of the vagus nerves for peptic ulcer. N Engl J Med1946;234:241. CrossRef

181. MrozCT, KellyKA. The role of the extrinsic antral nerves in the regulation of gastric emptying. Surg Gynecol Obstet1977;145:369.

182. BeaniL, BianchiC, CremaA. Vagal non‐adrenergic inhibition of guinea‐pig stomach. J Physiol (Lond)1971;217:259. CrossRef

183. MeulemansAL, HelsenLF, SchuurkesJAJ. Role of NO in vagally‐mediated relaxations of guinea‐pig stomach. Naunyn Schmiedebergs Arch Pharmacol1993;347:225. CrossRef

184. HennigGW, BrookesSJH, CostaM. Excitatory and inhibitory motor reflexes in the isolated guinea‐pig stomach. J Physiol (Lond)1997;501:197. CrossRef

185. FurnessJB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol2012;9:286. CrossRef

186. ThomasEA, BornsteinJC. Inhibitory cotransmission or after‐hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience2003;120:333. CrossRef

187. ChambersJD, BornsteinJC, ThomasEA. Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study. Am J Physiol2008;295:G534.

188. GwynneRM, ThomasEA, GohSM, et al.Segmentation induced by intraluminal fatty acid in isolated guinea‐pig duodenum and jejunum. J Physiol2004;556:557. CrossRef

189. FerensD, BaellJ, LesseneG, et al.Effects of modulators of Ca2+‐activated, intermediate‐conductance potassium channels on motility of the rat small intestine, in vivo. Neurogastroenterol Motil2007;19:383. CrossRef

190. HarumaK, WisteJA, CamilleriM. Effect of octreotide on gastrointestinal pressure profiles in health and in functional and organis gastrointestinal disorders. But1994;35:1064.

191. HirstGDS, McKirdyHC. A nervous mechanism for descending inhibition in guinea‐pig small intestine. J Physiol (Lond)1974;238:129. CrossRef

192. HirstGDS, HolmanME, McKirdyHC. Two descending nerve pathways activated by distension of guinea‐pig small intestine. J Physiol (Lond)1975;244:113. CrossRef

193. SmithTK, BornsteinJC, FurnessJB. Distension‐evoked ascending and descending reflexes in the circular muscle of guinea‐pig ileum: an intracellular study. J Auton Nerv Syst1990;29:203. CrossRef

194. SmithTK, BornsteinJC, FurnessJB. Interaction between reflexes evoked by distention and mucosal stimulation: electrophysiological studies of guinea‐pig ileum. J Auton Nerv Syst1991;34:69. CrossRef

195. YuanSY, FurnessJB, BornsteinJC, et al.Mucosal distortion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. J Auton Nerv Syst1991;35:219. CrossRef

196. SmithTK, FurnessJB. Reflex changes in circular muscle activity elicited by stroking the mucosa: an electrophysiological analysis in the isolated guinea‐pig ileum. J Auton Nerv Syst1988;25:205. CrossRef

197. SpencerNJ, HennigGW, SmithTK. Stretch‐activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol2003;284:G231.

198. SmithTK, BornsteinJC, FurnessJB. Convergence of reflex pathways excited by distension and mechanical stimulation of the mucosa onto the same myenteric neurons of the guinea pig small intestine. J Neurosci1992;12:1502.

199. DicksonEJ, SpencerNJ, HennigGW, et al.An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology2007;132:1912. CrossRef

200. HukuharaT, YamagamiM, NakayamaS. On the intestinal intrinsic reflexes. Jpn J Physiol1958;8:9. CrossRef

201. MagnusR. Versuche am überlebenden Dünndarm von Säugethieren. I. Miltheilung. Pflügers Arch Eur J Physiol1904;102:123. CrossRef

202. CostaM, FurnessJB. The peristaltic reflex: an analysis of nerve pathways and their pharmacology. Naunyn Schmiedebergs Arch Pharmacol1976;294:47. CrossRef

203. TsujiS, AngladeP, OzakiT, et al.Peristaltic movement evoked in intestinal tube devoid of mucosa and submucosa. Jpn J Physiol1992;42:363. CrossRef

204. SpencerNJ, NicholasSJ, RobinsonL, et al.Mechanisms of underlying distension‐evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells?Am J Physiol Gastrointest Liver Physiol2011;301:G519. CrossRef

205. BülbringE, CremaA. The release of 5‐hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J Physiol (Lond)1959;146:18. CrossRef

206. GershonMD. Nerves, reflexes, and the enteric nervous system. J Clin Gastroenterol2005;38:S184. CrossRef

207. GershonMD. 5‐Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diab Obes2013;20:14. CrossRef

208. BornsteinJC, CostaM, FurnessJB, et al.Electrophysiological analysis of projections of enteric inhibitory motor neurones in the guinea‐pig small intestine. J Physiol (Lond)1986;370:61. CrossRef

209. BrookesSJH, SteelePA, CostaM. Identification and immunohistochemistry of cholinergic and non‐cholinergic circular muscle motor neurons in the guinea‐pig small intestine. Neuroscience1991;42:863. CrossRef

210. SarnaS, StoddardC, BelbeckL, et al.Intrinsic nervous control of migrating myoelectric complexes. Am J Physiol1981;241:G16.

211. GalliganJJ, FurnessJB, CostaM. Migration of the myoelectric complex after interruption of the myenteric plexus: intestinal transection and regeneration of enteric nerves in the guinea pig. Gastroenterology1989;97:1135.

212. LundgrenO. Enteric nerves and diarrhoea. Pharmacol Toxicol2002;90:109. CrossRef

213. SchultzSG, FuiszRE, CurranPF. Amino acid and sugar transport in rabbit ileum. J Gen Physiol1966;49:849. CrossRef

214. WrightEM, LooDDF. Coupling between Na+, sugar, and water transport across the intestine. Ann N Y Acad Sci2000;915:54. CrossRef

215. SjövallH, JodalM, LundgrenO. Further evidence for a glucose‐activated secretory mechanism in the jejunum of the cat. Acta Physiol Scand1984;120:437. CrossRef

216. DienerM, RummelW. Distension‐induced secretion in the rat colon: mediation by prostaglandins and submucosal neurons. Eur J Pharmacol1990;178:47. CrossRef

217. FrielingT, WoodJD, CookeHJ. Submucosal reflexes: distention‐evoked ion transport in the guinea‐pig distal colon. Am J Physiol1992;263:G91.

218. VannerS, JiangMM, SurprenantA. Mucosal stimulation evokes vasodilation in submucosal arterioles by neuronal and nonneuronal mechanisms. Am J Physiol1993;264:G202.

219. SidhuM, CookeHJ. Role for 5‐HT and ACh in submucosal reflexes mediating colonic secretion. Am J Physiol1995;269:G346.

220. FlemströmG. Gastric and duodenal mucosal secretion of bicarbonate. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 3rd ed. New York: Raven Press; 1994: 1285.

221. PoulsenJH, FischerH, IllekB, et al.Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A1994;91:5340. CrossRef

222. JodalM, HolmgrenS, LundgrenO, et al.Involvement of the myenteric plexus in the cholera toxin‐induced net fluid secretion in the rat small intestine. Gastroenterology1993;105:1286. CrossRef

223. WeberE, NeunlistM, SchemannM, et al.Neural components of distension‐evoked secretory responses in the guinea‐pig distal colon. J Physiol (Lond)2001;536:741. CrossRef

224. VannerS. Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol2000;279:G380.

225. ReedDE, VannerSJ. Long vasodilator reflexes projecting through the myenteric plexus in guinea‐pig ileum. J Physiol (Lond)2003;553:911. CrossRef

226. LundgrenO, PeregrinAT, PerssonK, et al.Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science2000;287:491. CrossRef

227. MathiasJR, NogueiraJ, MartinJL, et al.Escherichia coli heat‐stable toxin: its effect on motility of the small intestine. Am J Physiol1982;242:G360.

228. CollinsSM. The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders. Gastroenterology1996;111:1683. CrossRef

229. VallanceBA, BlennerhassettPA, CollinsSM. Increased intestinal muscle contractility and worm expulsion in nematode‐infected mice. Am J Physiol1997;272:G321.

230. BernardC. Leçons sur les liquides de l'organisme. Paris, 1859.

231. MailmanDS, LakinM, IngrahamRC. Effects of hemorrhage on intestinal absorption and secretion. Proc Soc Exp Biol Med1967;125:728. CrossRef

232. MailmanDS, IngrahamRC. Effects of hemorrhage and tilting on Na, Cl and H2O absorption from the intestine. Proc Soc Exp Biol Med1971;137:78. CrossRef

233. SjövallH, JodalM, RedforsS, et al.The effect of carotid occlusion on the rate of net fluid absorption in the small intestine of rats and cats. Acta Physiol Scand1982;115:447. CrossRef

234. RedforsS, HallbäckDA, SjövallH, et al.Effects of hemorrhage on intramural blood flow distribution, villous tissue osmolality and fluid and electrolyte transport in the cat small intestine. Acta Physiol Scand1984;121:211. CrossRef

235. JönsonC, Tunbäck HansonP, FändriksL. Splanchnic nerve activation inhibits the increase in duodenal HCO3‐ secretion induced by luminal acidification in the rat. Gastroenterology1989;96:45.

236. FurnessJB, CostaM. The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol1974;69:1.

237. KuntzA, SaccomannoG. Reflex inhibition of intestinal motility mediated through decentralized prevertebral ganglia. J Neurophysiol1944;7:163.

238. SzurszewskiJH, MillerSM. Physiology of prevertebral ganglia. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 3rd ed. New York: Raven Press; 1994: 795.

239. SzurszewskiJH, ErmilovLG, MillerSM. Prevertebral ganglia and intestinofugal afferent neurones. Gut2002;51:i6. CrossRef

240. CrowcroftPJ, HolmanME, SzurszewskiJH. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea‐pig. J Physiol (Lond)1971;219:443. CrossRef

241. SzurszewskiJH, WeemsWA. A study of peripheral input to and its control by post‐ganglionic neurones of the inferior mesenteric ganglion. J Physiol (Lond)1976;256:541. CrossRef

242. KreulenDL, SzurszewskiJH. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo‐colonic inhibitory reflex. J Physiol (Lond)1979;295:21. CrossRef

243. MannPT, FurnessJB, PompoloS, et al.Chemical coding of neurons that project from different regions of intestine to the coeliac ganglion of the guinea pig. J Auton Nerv Syst1995;56:15. CrossRef

244. KuntzA, Van BuskirkC. Reflex inhibition of bile flow and intestinal motility mediated through decentralized celiac plexus. Proc Soc Exp Biol Med1941;46:519. CrossRef

245. FurnessJB, CostaM. Types of nerves in the enteric nervous system. Neuroscience1980;5:1. CrossRef

246. FurnessJB, JonesC, NurgaliK, ClercN. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol2004;72:143. CrossRef