Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Smooth muscle of the gut

1. GabellaG. Structure of muscles and nerves in the gastrointestinal tract. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 2nd ed. New York: Raven Press; 1987: 335.

2. GabellaG. Structure of intestinal musculature. In: WoodJD(ed). Motility and Circulation. Handbook of Physiology, Vol. 1, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 103.

3. GabellaG. Quantitative morphological study of smooth muscle cells of the guinea‐pig teniae coli. Cell Tissue Res1976;170:161.

4. OkamotoT, SchlegelA, SchererPE, et al.Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem1998;273:5419. CrossRef

5. ShaulPE, AndersonRG. Role of plasmalemmal caveolae in signal transduction. Am J Physiol1998;275:L843.

6. MurthyKS, MakhloufGM. Heterologous desensitization mediated by G protein‐specific binding to caveolin. J Biol Chem2000;275:30211. CrossRef

7. GerthofferWT, GunstSJ. Signal transduction in smooth muscle. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol2001;91:963.

8. MurphyRA. Contraction of muscle cells. In: BerneRM, LevyMN(eds). Physiology, 2nd ed. St Louis, MO: CV Mosby; 1988: 315.

9. GabellaG, BlundellD. Gap junctions of the muscles of the small and large intestine. Cell Tissue Res1981;219:469. CrossRef

10. SomlyoAP, SomlyoAV, ShumanH. Electron probe analysis of vascular smooth muscle. J Cell Biol1979;81:316. CrossRef

11. RayemakersL, WuytackF, BatraS, et al.A comparative study of the calcium accumulation by mitochondria and microsomes isolated from the smooth muscle of the guinea‐pig teniae coli. Pflugers Arch1977;368:217. CrossRef

12. BitarKN, BurgessGM, PutneyJWJr, et al.Source of activator calcium in isolated guinea pig and human gastric muscle cells. Am J Physiol1986;250:G280.

13. BitarKN, BradfordPJ, PutneyJWJr, et al.Stoichiometry of contraction and Ca2+ mobilization by inositol 1,4,5‐triphosphate in isolated gastric smooth muscle cells. J Biol Chem1986;261:16591.

14. BerridgeMJ, IrvineRF. Inositol phosphates and cell signaling. Nature1989;341:197. CrossRef

15. BurgessGM, McKinneyJS, FabiatoA, et al.Calcium pools in saponin‐permeabilized guinea pig hepatocytes. J Biol Chem1983;258:15336.

16. HartshorneDJ. Biochemistry of the contractile process in smooth muscle. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 2nd ed. New York: Raven Press; 1987: 423.

17. BondM, SomlyoAV. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol1982;95:403. CrossRef

18. SobieszekA. Vertebrate smooth muscle myosin: enzymatic and structural properties. In: StephenNL(ed). The Biochemistry of Smooth Muscle. Baltimore, MD: University Park Press; 1977: 413.

19. MurphyRA. Muscle cells of hollow organs. News Physiol Sci1988;3:124.

20. SomlyoAP, SomlyoAP. Signal transduction and regulation in smooth muscle. Nature1994;372:231. CrossRef

21. SomlyoAP, SomlyoAP. Ca2+ sensitivity of smooth muscle and non‐muscle myosin II: modulated by G proteins, kinases and phosphatases. Physiol Rev2003;83:1325. CrossRef

22. MurthyKS. Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol2006;68:345. CrossRef

23. KammKE, StullJT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem2001;276:4527. CrossRef

24. HarshorneDJ, EtoM, ErodiF. Myosin light chain phosphatase: subunit composition, interaction and regulation. J Muscle Res Cell Motil1998;19:325. CrossRef

25. MakhloufGM, MurthyKS. Signal transduction in gastrointestinal smooth muscle. Cell Signal1997;9:269. CrossRef

26. SwardK, MitaM, WilsonDP, et al.The role of RhoA and Rhoassociated kinase in vascular smooth muscle contraction. Curr Hypertens Rep2003;5:66. CrossRef

27. MurthyKS, ZhouH, GriderJR, et al.Differential signaling by muscarinic receptors in smooth muscle: m2‐mediated inactivation of MLC kinase via Gi3, Cdc42/Rac1 and p‐21‐activated kinase 1 pathway, and m3‐mediated MLC20 phosphorylation via Rho‐associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI‐17 pathway. Biochem J2003;374:145. CrossRef

28. LefkowitzRJ, CaronMG. Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem1988;263:4993.

29. BarnardEA. Separating receptor subtypes from their shadows. Nature1988;335:381. CrossRef

30. GilmanAG. G proteins and regulation of adenylyl cyclases. Biosci Rep1995;15:65. CrossRef

31. HollingerS, HeplerJR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Annu Rev Biochem2002;67:653.

32. BerridgeMJ, IrvineRF. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature1984;312:321. CrossRef

33. ExtonJH. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol1996;36:481. CrossRef

34. NishizukaY. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature1988;334:661. CrossRef

35. MurthyKS, MakhloufGM. Phosphoinositide metabolism in intestinal smooth muscle: preferential production of Ins(1,4,5)P3 in circular muscle cells. Am J Physiol1991;261:G945.

36. CockcroftS, ThomasGMH. Inositol‐lipid‐specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J1992;288:1. CrossRef

37. BerridgeMJ, GallioneA. Cytosolic calcium oscillators. FASEB J1988;2:3074.

38. McPhersonPS, CampbellKP. The ryanodine receptor/Ca2+ release channel. J Biol Chem1993;268:13765.

39. FuruichiT, YoshikawaS, MiyawakiA, et al.Primary structure and function expression of the inositol 1,4,5‐triphosphate‐binding protein P400. Nature1989;342:32. CrossRef

40. MigneryGA, SudhofTC, TakelK, et al.Putative receptor for inositol 1,4,5‐triphosphate similar to ryanodine receptor. Nature1989;342:192. CrossRef

41. PutneyJWJr, BroadLM, BraunFJ, et al.Mechanisms of capacitative calcium entry. J Cell Sci2001;114:2223.

42. KitazawaT, KobayashiS, HoriutiK, et al.Receptor‐coupled permeabilized smooth muscle: role of the phosphatidyl‐inositol cascade, G‐proteins and modulation of the contractile response to Ca2. J Biol Chem1989;264:5339.

43. KobayashiS, SomlyoAV, SomlyoAP. Heparin inhibits the inositol 1,4,5‐triphosphate‐dependent but not the independent calcium release induced by guanine nucleotide in vascular smooth muscle. Biochem Biophys Res Commun1988;153:625. CrossRef

44. BitarKN, MakhloufGM. Receptors on smooth muscle cells: characterization by contraction and specific antagonists. Am J Physiol1982;242:G400.

45. BitarKN, BradfordP, PutneyJWJr, et al.Cytosolic calcium during contraction of isolated mammalian gastric muscle cells. Science1986;232:1143. CrossRef

46. GriderJR, MakhloufGM. Contraction mediated by Ca2+ release in circular and Ca2+ influx in longitudinal intestinal muscle cells. J Pharmacol Exp Ther1988;244:432.

47. MurthyKS, MakhloufGM. Fluoride activates G protein‐dependent and independent pathways in dispersed intestinal smooth muscle cells. Biochem Biophys Res Commun1994;202:1681. CrossRef

48. MurthyKS, GriderJR, MakhloufGM. InsP3‐dependent Ca2+ mobilization in circular but not longitudinal muscle cells of intestine. Am J Physiol1991;261:G937.

49. MakhloufGM, MurthyKS. Cellular physiology of the gastrointestinal smooth muscle. In: JohnsonLR(ed). Physiology of Gastrointestinal Tract, 4th ed. New York: Academic Press; 2006: 315.

50. KuemmerleJF, MurthyKS, MakhloufGM. Agonist‐activated, ryanodine‐sensitive, IP3‐insensitive Ca2+ release channels in longitudinal muscle of intestine. Am J Physiol1994;266:C1421.

51. MurthyKS, KuemmerleJF, MakhloufGM. Agonist‐mediated activation of PLA2 initiates Ca2+ in intestinal longitudinal smooth muscle. Am J Physiol1995;269:G93.

52. KuemmerleJF, MakhloufGM. Activation of Cl− channels by contractile agonists depolarizes longitudinal muscle and triggers Ca2+ influx via voltage‐sensitive Ca2+ channels. Gastroenterology1994;106:A527.

53. KuemmerleJF, MakhloufGM. Agonist‐stimulated cyclic ADP ribose: endogenous modulator of Ca2+‐induced Ca2+‐release in intestinal longitudinal muscle. J Biol Chem1995;270:25488. CrossRef

54. MurthyKS, ZhouH, GriderJR, et al.Sequential activation of heterotrimeric and monomeric G proteins mediates PLD activity in smooth muscle. Am J Physiol Gastrointest Liver Physiol2001;280:G381.

55. MurthyKS, GriderJR, KuemmerleJF, et al.Sustained muscle contraction induced by agonists, growth factors, and Ca2+ mediated by distinct PKC isozymes. Am J Physiol Gastrointest Liver Physiol2000;279:G201.

56. HarnettKM, CaoW, BiancaniP. Signal transduction pathways that regulate smooth muscle function. I. Signal transduction in phasic (esophageal) and tonic (gastroesophageal) sphincter smooth muscle. Am J Physiol Gastrointest Liver Physiol2005;288:G407. CrossRef

57. MurthyKS, TengB‐Q, ZhouH, et al.Gi1/Gi2‐dependent signaling by single‐transmembrane natriuretic peptide clearance receptor. Am J Physiol Gastrointest Liver Physiol2000;278:G974.

58. BitarKN, MakhloufGM. Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science1982;216:531. CrossRef

59. GriderJR, MurthyKS, JinJG, et al.Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol1992;262:G774.

60. MurthyKS, SeveriC, GriderJR, et al.Inhibition of inositol 1,4,5‐triphosphate (IP3) production and IP3‐dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol1993;264:G967.

61. MurthyKS, ZhangK, JinJG, et al.VIP‐mediated G‐protein‐coupled Ca2+ influx activates a constitutive nitric oxide synthase in dispersed gastric muscle cells. Am J Physiol1993;265:G660.

62. MurthyKS, MakhloufGM. Interaction of cA‐kinase and cG‐kinase in mediating relaxation of dispersed smooth muscle cells. Am J Physiol1995;268:C171.

63. SunaharaRK, DessauerCW, GilmanAG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol1996;36:461. CrossRef

64. MurthyKS, ZhouH, MakhloufGM. PKA‐dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle. Am J Physiol Gastrointest Liver Physiol2002;282:C508. CrossRef

65. FrancisSH, TurkoIV, CorbinJD. Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol2001;65:1. CrossRef

66. MurthyKS. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP‐dependent protein kinase in smooth muscle. Biochem J2001;360:199. CrossRef

67. MurthyKS. cAMP inhibits IP3‐dependent Ca2+ release by preferential activation of cGMP‐primed PKG. Am J Physiol Gastrointest Liver Physiol2001;281:G1238.

68. JinJG, MurthyKS, GriderJR, et al.Activation of cAMP‐ and cGMP‐dependent pathways by relaxant agents in isolated gastric muscle cells. Am J Physiol1993;264:G470.

69. MurthyKS, ZhouH, GriderJR, et al.Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially meditated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol2003;284:G1006. CrossRef

70. WooldridgeAA, MacDonaldJA, ErodiF, et al.Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of serine 695 in response to cyclic nucleotides. J Biol Chem2004;279:34495. CrossRef

71. WalkerLA, MacDonaldJA, LiuX, et al.Site‐specific phosphorylation and point mutations of telokin modulates its Ca2+‐desensitizing effect in smooth muscle. J Biol Chem2001;276:24519. CrossRef

72. ChasseSA, DohlmanHG. RGS proteins: G protein‐coupled receptors meet their match. Assay Drug Dev Technol2003;1:357. CrossRef

73. CasteelsR. Membrane potential in smooth muscle cells. In: BulbringE, BradingAF, JonesAW, et al. (eds). Smooth Muscle: An Assessment of Current Knowledge. Austin, TX: University of Texas Press; 1981: 105.

74. SandersKM. Electrophysiology of dissociated gastrointestinal muscle cells. In: WoodJD(ed). Motility and Circulation. Handbook of Physiology, Vol. 1, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 163.

75. SzurszewskiJH. Electrical basis of gastrointestinal motility. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 2nd ed. New York: Raven Press; 1987: 383.

76. SandersKM, SmithTK. Electrophysiology of colonic smooth muscle. In: WoodJD(ed). Motility and Circulation. Handbook of Physiology, Vol. 1, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 251.

77. SandersKM, PublicoverNG. Electrophysiology of gastric musculature. In: WoodJD(ed). Motility and Circulation. Handbook of Physiology, Vol. 1, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 187.

78. AlbertsB, BrayD, LewisJ, et al.Molecular Biology of the Cell. New York: Garland Publishing; 1983: 291.

79. WalshJVJr, SingerJJ. Calcium action potentials in single freshly isolated smooth muscle cells. Am J Physiol1980;239:C162.

80. WalshJVJr, SingerJJ. Voltage clamp of single freshly dissociated smooth muscle cells: current‐voltage relationships for three currents. Pflugers Arch1981;390:207. CrossRef

81. SingerJJ, WalshJVJr. Passive properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol1980;239:153.

82. BenhamCD, BoltonTB. Patch‐clamp studies of slow potentialsensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum. J Physiol1983;340:469. CrossRef

83. BenhamCD, BoltonTB, LangRJ, et al.Calcium‐activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea‐pig mesenteric artery. J Physiol1986;371:45. CrossRef

84. BoltonTB, LangRJ, TakewakiT, et al.Patch and whole‐cell voltage clamp of single mammalian visceral and vascular smooth muscle cells. Experientia1985;41:887. CrossRef

85. AndreasC, SandersKM. Ca2+‐activated K+ channels of canine colonic myocytes. Am J Physiol1989;257:C470.

86. GanitkevichVY, ShubaMF, SmirnovSV. Potential‐dependent calcium inward current in a single isolated smooth muscle cell of the guinea‐pig teniae caeci. J Physiol1986;380:1. CrossRef

87. DroogmansG, CallewaertG. Ca2+‐channel current and its modification by the dihydropyridine agonist BAY k8644 in isolated smooth muscle cells. Pflugers Arch1986;406:259. CrossRef

88. MitraR, MoradM. Ca2+ and Ca2+‐activated K+ currents in mammalian gastric smooth muscle cells. Science1985;229:269. CrossRef

89. BechemM, HebischS, SchrammM. Ca2+ agonists: new, sensitive probes for Ca2+ channels. Trends Pharmacol Sci1988;9:257. CrossRef

90. SingerJJ, WalshJVJr. Large conductance Ca2+ activated K+ channels in smooth muscle cell membrane. Biophys J1984;45:68. CrossRef

91. SingerJJ, WalshJVJr. Characterization of calcium‐activated potassium channels in single smooth muscle cells using the patch‐clamp technique. Pflugers Arch1987;408:98. CrossRef

92. JinJG, KatsoulisS, SchmidtWE, et al.Inhibitory transmission in teniae coli mediated by distinct vasoactive intestinal peptide and apamin‐sensitive pituitary adenylate cyclase activating peptide receptors. J Pharmacol Exp Ther1994;270:433.

93. BrownDA, AdamsPR. Muscarinic suppression of a novel voltage‐sensitive K+ current in a vertebrate neurone. Nature1980;283:673. CrossRef

94. SimsSM, SingerJJ, WalshJVJr. Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad. J Physiol1985;367:503. CrossRef

95. SimsSM, WalshJVJr, SingerJJ. Substance P and acetylcholine both suppress the same K+ current in dissociated smooth muscle cells. Am J Physiol1986;251:C580.

96. ThunebergL. Interstitial cells of Cajal. In: WoodJD(ed). Motility and Circulation. Handbook of Physiology, Vol. 1, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 349.

97. BurnsAJ, LomazAEZ, TorihashiS, et al.Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A1996;93:12008. CrossRef

98. YamamotoM. Electron microscopic studies on the innervation of the smooth muscle and the interstitial cells of Cajal in the small intestine of the mouse and bat. Arch Histol Jpn1977;40:171. CrossRef

99. WardSM, SandersKM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec2001;262:125. CrossRef

100. WardSM. Interstitial cells of Cajal in enteric neurotransmission. Gut2000;47(Suppl 4):iv40.

101. SandersKM, KohSD, WardSM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol2006;68:307. CrossRef

102. LangtonP, WardSM, CarlA, et al.Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci U S A1989;86:7280. CrossRef

103. WardSM, BurnsAJ, TorihashiS, et al.Mutation of the proto‐oncogene c‐kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol1994;480:91. CrossRef

104. HuizingaJD, ThunebergL, KluppelM, et al.W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature1995;373:347. CrossRef

105. El‐SharkawyTY, MorganKG, SzurszewskiJH. Intracellular activity of canine and human gastric smooth muscle. J Physiol1978;279:291. CrossRef

106. SzurszewskiJH. Mechanism of action of pentagastrin and acetylcholine on the longitudinal muscle of the canine antrum. J Physiol1975;252:335. CrossRef

107. SandersKM. Colonic electrical activity: concerto for two pacemakers. News Physiol Sci1989;4:176.

108. KobayashiS, FurnessJB, SmithTK, et al.Histological identification of the interstitial cells of Cajal in the guinea‐pig small intestine. Arch Histol Cytol1989;52:267. CrossRef

109. SandersKM, OrdogT, KohSD, et al.A novel pacemaker mechanism drives gastrointestinal rhythmicity. News Physiol Sci2000;15:291.

110. SandersKM, BurkeEP, StevensRJ. Effects of methylene blue on rhythmic activity and membrane potential in the canine proximal colon. Am J Physiol1989;256:G779.

111. HaraY, KubotaM, SzurszewskiJH. Electrophysiology of the smooth muscle in the small intestine of some mammals. J Physiol1986;372:501. CrossRef

112. SuzukiN, ProsserCL, DahmsV. Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am J Physiol1986;250:G287.

113. SmithTK, ReedBJ, SandersKM. Electrical pacemakers of canine proximal colon are functionally innervated by inhibitory motor neurons. Am J Physiol1989;256:C466.

114. SmithTK. Spontaneous junction potentials and slow waves in the circular muscle of isolated segments of guinea‐pig ileum. J Auton Nerv Syst1989;27:147. CrossRef

115. MorganKG, SzurszewskiJH. Mechanisms of phasic and tonic actions of pentagastrin on canine gastric smooth muscle. J Physiol1980;301:229. CrossRef

116. MorganKG, SchmalzPF, GoVL, et al.Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. Am J Physiol1978;235:E324.

117. SandersKM, VogalisF. Organization of electrical activity in the canine pyloric canal. J Physiol1989;416:49. CrossRef

118. MorganKG, MuirTC, SzurszewskiJH. The electrical basis for contraction and relaxation in canine fundal smooth muscle. J Physiol1981;311:475. CrossRef

119. BauerAJ, SandersKM. Gradient in excitation‐contraction coupling in canine gastric antral circular muscle. J Physiol1985;369:283. CrossRef

120. SmithTK, ReedBJ, SandersKM. Interaction of two electrical pacemakers in muscularis of canine proximal colon. Am J Physiol1987;252:C290.

121. CostaM, BrookesSJH, SteelePA, et al.Neurochemical classification of myenteric neurons in the guinea pig ileum. Neuroscience1996;75:949. CrossRef

122. CostaM, FurnessJB, Llewellyn‐SmithIJ. Histochemistry of enteric nervous system. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 2nd ed. New York: Raven Press; 1987: 1.

123. LlewellynIJ, FurnessJB, GibbinsIL, et al.Quantitative ultrastructural analysis of enkephalin‐, substance P‐, and VIP‐immunoreactive nerve fibers in the circular muscle of the guinea pig small intestine. J Comp Neurol1988;272:139. CrossRef

124. WilsonAJ, Llewellyn‐SmithIJ, FurnessJB, et al.The source of the nerve fibres forming the deep muscular and circular muscle plexuses in the small intestine of the guinea‐pig. Cell Tissue Res1987;247:497. CrossRef

125. WatchowDA, FurnessJB, CostaM. Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology1988;95:32.

126. CostaM, FurnessJB, PompoloS, et al.Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea pig small intestine. Neurosci Lett1992;148:121. CrossRef

127. FurnessJB, CostaM. Identification of gastrointestinal neurotransmitters. In: BertacciniG(ed). Handbook of Experimental Pharmacology: Mediators and Drugs in Gastrointestinal Motility, Vol. 59. Berlin: Springer‐Verlag; 1982: 279. CrossRef

128. MakhloufGM, GriderJR. Receptors for gut peptides on smooth muscle cells of the gut. In: MakhloufGM(ed). Neural and Endocrine Biology of the Gut. Handbook of Physiology, Vol. 2, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 281.

129. MakhloufGM, GriderJR, SchubertML. Identification of physiological function of gut peptides. In: MakhloufGM(ed). Neural and Endocrine Biology of the Gut. Handbook of Physiology, Vol. 2, Sect. 6: The Gastrointestinal System. New York: American Physiological Society; 1989: 123.

130. MakhloufGM. Enteric neuropeptides: role in neuromuscular activity of the gut. Trends Pharmacol Sci1985;6:214. CrossRef

131. MichelettiR, GriderJR, MakhloufGM. Identification of bombesin receptors on isolated muscle cells from human intestine. Regul Pept1988;21:219. CrossRef

132. ZetlerG. Antagonism of the gut‐contracting effects of bombesin and neurotensin by opioid peptides, morphine, atropine or tetrodotoxin. Pharmacology1980;21:348. CrossRef

133. YauWM, LinglePF, YoutherML. Interaction of enkephalin and caerulein on guinea pig small intestine. Eur J Pharmacol1983;90:245. CrossRef

134. GriderJR, MakhloufGM. Regional and cellular heterogeneity of cholecystokinin receptors mediating muscle contraction in the gut. Gastroenterology1987;92:175.

135. GriderJR, CableMB, SaidSI, et al.Vasoactive intestinal peptide: relaxant neurotransmitter in teniae coli of the guinea pig. Gastroenterology1985;89:36.

136. GriderJR, MakhloufGM. Suppression of inhibitory neural input to colonic circular muscle by opioid peptides. J Pharmacol Exp Ther1987;243:205.

137. GriderJR, JinJG. VIP release and l‐citrulline production from isolated ganglia of the myenteric plexus: evidence for regulation of VIP release by nitric oxide. Neuroscience1993;54:521. CrossRef

138. JinJG, MurthyKS, GriderJR, et al.Stoichiometry of VIP release and NO formation during nerve stimulation of rabbit gastric muscle. Am J Physiol1997;271:G357.

139. JinJG, MisraS, GriderJR, et al.Functional difference between substance P and neurokinin A: relaxation of gastric muscle by substance P is mediated by VIP and nitric oxide. Am J Physiol1993;264:G678.

140. GriderJR, KatsoulisS, SchmidtWE, et al.Regulation of the descending relaxation phase of intestinal peristalsis by PACAP. J Auton Nerv Syst1994;50:151. CrossRef

141. GriderJR. Interplay of VIP and nitric oxide in the regulation of the descending relaxation phase of peristalsis. Am J Physiol1993;264:G334.

142. MurthyKS, TengB‐Q, JinJ‐G, et al.G protein‐dependent activation of smooth muscle eNOS via natriuretic peptide clearance receptor. Am J Physiol1998;275:C1409.

143. MurthyKS, MakhloufGM. VIP/PACAP‐dependent activation of membrane‐bound NO synthase in smooth muscle mediated by pertussis toxin‐sensitive Gi1‐2. J Biol Chem1994;269:15977.

144. TengB, MurthyKS, KuemmerleJF, et al.Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Physiol1998;275:G342.

145. AllescherHD, KurjakM, HuberA, et al.Regulation of VIP release from rat enteric nerve terminals: evidence for a stimulatory effect of NO. Am J Physiol1996;271:G568.

146. MurthyKS, MakhloufGM. Identification of the G protein‐activating domain of the natriuretic peptide clearance receptor (NPR‐C). J Biol Chem1999;274:17587. CrossRef

147. MurthyKS, TengB‐Q, ZhouH, et al.Gi1/Gi2‐dependent signaling by single‐transmembrane natriuretic peptide clearance receptor. Am J Physiol Gastrointest Liver Physiol2000;278:G974.

148. ZhouH, MurthyKS. Identification of G‐protein‐activating sequence of the single‐transmembrane natriuretic peptide receptor C (NPR‐C). Am J Physiol2003;284:C1255. CrossRef

149. MurthyKS, JinJG, MakhloufGM. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase C. Am J Physiol1994;266:G161.

150. BitarKN, MakhloufGM. Specific opiate receptors on isolated mammalian gastric smooth muscle cells. Nature1982;297:72. CrossRef

151. SouquetJC, GriderJR, BitarKN, et al.Receptors for mammalian tachykinins on isolated intestinal smooth muscle cells. Am J Physiol1985;249:G533.

152. BiancaniP, WalshJH, BeharJ. Vasoactive intestinal peptide: a neurotransmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology1985;89:867.

153. WileyJW, O'DorisioTM, OwyangC. Vasoactive intestinal peptide mediated CCK‐induced relaxation of sphincter of Oddi. J Clin Invest1988;81:1920. CrossRef

154. GriderJR, MakhloufGM. Colonic peristaltic reflex: identification of VIP as mediator of descending relaxation. Am J Physiol1986;251:G40.

155. GriderJR. Identification of neurotransmitters regulating intestinal peristaltic reflex in humans. Gastroenterology1989;97:1414.

156. GriderJR. Tachykinins as transmitters of ascending contractile component of the peristaltic reflex. Am J Physiol1989;257:G709.

157. GriderJR, ArimuraA, MakhloufGM. Role of somatostatin neurons in intestinal peristalsis: facilitatory interneurons in descending pathways. Am J Physiol1987;253:G434.

158. GriderJR, MakhloufGM. Role of opioid neurons in the regulation of intestinal peristalsis. Am J Physiol1987;253:G226.

159. GriderJR. Interplay of somatostatin, opioid, and GABA neurons in the regulation of peristalsis reflex. Am J Physiol1994;267:G696.

160. GriderJR, MakhloufGM. Enteric GABA: mode of action and role in the regulation of the peristaltic reflex. Am J Physiol1992;262:G690.

161. GriderJR. Regulation of excitatory neural input to longitudinal intestinal muscle by myenteric interneurons. Am J Physiol1998;275:G73.

162. GriderJR, JinJG. Distinct populations of sensory neurons mediate the peristaltic reflex elicited by muscle stretch and mucosal stimulation. J Neurosci1994;14:2854.

163. GriderJR. CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am J Physiol1994;266:G1139.

164. GriderJR, KuemmerleJF, JinJG. 5‐HT released by mucosal stimuli initiates peristalsis by activating 5‐HT4–5‐HT1p receptors on sensory CGRP neurons. Am J Physiol1996;270:G778.

165. Foxx‐OrensteinAE, KuemmerleJF, GriderJR. Distinct 5‐HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine. Gastroenterology1996;111:1281. CrossRef

166. GriderJR, Foxx‐OrensteinAE, JinJ‐G. 5‐hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology1998;115:370. CrossRef

167. Foxx‐OrensteinAE, JinJ‐G, GriderJR. 5‐HT4 receptor agonists and δ‐opioid receptor antagonists act synergistically to stimulate colonic propulsion. Am J Physiol1998;275:G979.

168. JinJ‐G, Foxx‐OrensteinAE, GriderJR. Propulsion in guinea pig colon induced by 5‐hydroxytryptamine via 5‐HT4 and 5‐HT3 receptors. J Pharmacol Exp Ther1999;288:93.

169. Foxx‐OrensteinAE, GriderJR. Regulation of colonic propulsion by enteric excitatory and inhibitory neurotransmitter. Am J Physiol1996;271:G433.

170. HallKE, GreenbergGR, El‐SharkawyTY, et al.Relationship between porcine motilin induced migrating motor complex‐like activity, vagal integrity and endogenous motilin release in dogs. Gastroenterology1984;87:76.

171. PoitrasP. Motilin is a digestive hormone in the dog. Gastroenterology1984;87:909.

172. MurthyKS, MakhloufGM. Coexpression of ligand‐gated P2X and G protein‐coupled P2Y receptors in smooth muscle: preferential activation of P2Y receptors coupled to phospholipase C (PLC)‐β1 via Gαq/11 and to PLC‐β3 via Gβγi3. J Biol Chem1998;273:4695. CrossRef

173. MurthyKS, MakhloufGM. Adenosine A1 receptor‐mediated activation of phospholipase C‐β3 in intestinal muscle: dual requirement for α and βγ subunits of Gi3. Mol Pharmacol1995;47:1172.

174. KuemmerleJF, MartinDC, MurthyKS, et al.Coexistence of contractile and relaxant 5‐HT receptors coupled to distinct signaling pathways in intestinal muscle cells: convergence of the pathways on Ca2+ mobilization. Mol Pharmacol1992;42:1090.

175. MoriniG, KuemmerleJF, ImpicciatoreM, et al.Coexistence of histamine H1 and H2 receptors coupled to distinct signal transduction pathways in isolated intestinal muscle cells. J Pharmacol Exp Ther1993;264:598.

176. RajagopalS, KumarDP, MahavadiS, et al.Activation of G protein‐coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both EPac‐ and PKA‐mediated inhibition of RhoA/Rho kinase pathway. Am J Physiol Gastrointest Liver Physiol2013;304:G527. CrossRef

177. SingerCA, SalinthoneS, BakerKJ, et al.Synthesis of immune modulators by smooth muscle. Bioessays2004;26:646. CrossRef

178. ShiX‐Z, SarnaSK. Transcriptional regulation of inflammatory mediators secreted by human colonic circular smooth muscle cells. Am J Physiol Gastrointest Liver Physiol2005;289:G274. CrossRef

179. CaoW, ChengL, BeharJ, et al.Proinflammatory cytokines alter/reduce esophageal circular muscle contraction in experimental cat esophagitis. Am J Physiol2004;287:G1131.

180. AkihoH, BlennerhassettP, DengY, et al.Role of IL‐4, IL‐13, and STAT6 in inflammation‐induced hypercontractility of murine smooth muscle cells. Am J Physiol Gastrointest Liver Physiol2002;282:G226.

181. Shea‐DonohueT, UrbanJFJr. Gastrointestinal parasite and host interactions. Curr Opin Gastroenterol2004;20:3. CrossRef

182. ShiX‐Z, LindholmPF, SarnaSK. NF‐kappa B activation by oxidative stress and inflammation suppresses contractility in colonic circular smooth muscle cells. Gastroenterology2003;124:1369. CrossRef

183. HuW, MahavadiS, LiF, et al.Up‐regulation of RGS4 and down‐regulation of CP‐17 mediate inhibition of colonic muscle contraction by interleukin‐1β. Am J Physiol2007;293:C1991. CrossRef

184. ShiX‐Z, PazdrakK, SaadaN, et al.Negative transcriptional regulation of human colonic smooth muscle Cav 1.2 channels by p50 and p65 subunits of NF‐kappa B. Gastroenterology2005;129:1518. CrossRef

185. HuW, LiF, MahavadiS, et al.Interleukin‐1β up‐regulates RGS4 through the canonical IKK2/IκBα/NF‐κB pathway in rabbit colonic smooth muscle. Biochem J2008;412:35. CrossRef

186. HuW, LiF, MahavadiS, et al.Upragulation of RGS4 expression IL‐1β in colonic smooth muscle is enhanced by ERK1/2 and p38 MAPK and inhibited by PI3K/Akt/GSK3β pathway. Am J Physiol Cell Physiol2009;296:C1310. CrossRef

187. CaoW, HarnettKM, ChengL, et al.H2O2: a mediator of esophagitisinduced damage to calcium‐release mechanisms in cat lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol2005;288:G1170. CrossRef

188. CaoW, VreesMD, PotentiFM, et al.Interleukin 1beta‐induced production of H2O2 contributes to reduced sigmoid colonic circular smooth muscle contractility in ulcerative colitis. J Pharmacol Exp Ther2004;311:60. CrossRef

189. HuW, LiF, MurthyKS. Interleukin‐1β stimulates expression of NADPH oxidases NOX1 and NOX4 in colonic smooth muscle: mediation by NF‐κB and differential modulation by c‐jun kinase and ERK1/2. Gastroenterology2006;130:A505.

190. MahavadiS, AndersonCD, AlShboulO, et al.Identification of the signaling mechanisms that mediate hypercontractility during inflammation: activation of MLCK via NF‐κB/PKA/AMPK pathway. Neurogastroenterol Motil2010;22:A307.

191. SmithTK, ReedBJ, SandersKM. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Physiol1987;252:C215.