Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

The mucosal immune system and gastrointestinal inflammation

1. OwenRL, JonesAL. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology1974;66:189.

2. MesteckyJ, McGheeJR. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol1987;40:153. CrossRef

3. UnderdownBJ, SchiffJM, ImmunoglobulinA. Strategic defense initiative at the mucosal surface. Annu Rev Immunol1986;4:389. CrossRef

4. KawanishiH, SaltzmanL, StroberW. Mechanisms regulating IgA class‐specific immunoglobulin production in murine gut‐associated lymphoid tissues. II. Terminal differentiation of postswitch sIgA‐bearing Peyer's patch B cells. J Exp Med1983;158:649. CrossRef

5. KawanishiH, SaltzmanLE, StroberW. Mechanisms regulating IgA class‐specific immunoglobulin production in murine gut‐associated lymphoid tissues. I. T cells derived from Peyer's patches that switch sIgM B cells to sIgA B cells in vitro. J Exp Med1983;157:433. CrossRef

6. NiessJH, BrandS, GuX, et al.CX3CR1‐mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science2005;307:254. CrossRef

7. McDermottMR, BienenstockJ. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol1979;122:1892.

8. MadriJA, GraesserD. Cell migration in the immune system: the evolving inter‐related roles of adhesion molecules and proteinases. Dev Immunol2000;7:103. CrossRef

9. HaughtonG, ArnoldLW, WhitmoreAC, et al.B‐1 cells are made, not born. Immunol Today1993;14:84, discussion 87. CrossRef

10. von BoehmerH. Positive selection of lymphocytes. Cell1994;76:219. CrossRef

11. NossalGJ. Negative selection of lymphocytes. Cell1994;76:229. CrossRef

12. BermanD, ParkerSM, SiegelJ, et al.Blockade of cytotoxic T‐lymphocyte antigen‐4by ipilmumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun2010;10:11.

13. CepekKL, ParkerCM, MadaraJL, et al.Integrin alpha E beta 7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol1993;150:3459.

14. JanewayCAJr, JonesB, HaydayA. Specificity and function of T cells bearing gamma delta receptors. Immunol Today1988;9:73. CrossRef

15. BarrettTA, DelvyML, KennedyDM, et al.Mechanism of selftolerance of gamma/delta T cells in epithelial tissue. J Exp Med1992;175:65. CrossRef

16. KanamoriY, IshimaruK, NannoM, et al.Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c‐kit+ IL‐7R+ Thy1+ lympho‐hemopoietic progenitors develop. J Exp Med1996;184:1449. CrossRef

17. WeissA. Structure and function of the T cell antigen receptor. J Clin Invest1990;86:1015. CrossRef

18. GarbocziDN, GhoshP, UtzU, et al.Structure of the complex between human T‐cell receptor, viral peptide and HLA‐A2. Nature1996;384:134. CrossRef

19. HoltmeierW, KabelitzD. Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy2005;86:151. CrossRef

20. KabelitzD, MarischenL, ObergHH, et al.Epithelial defence by gamma delta T cells. Int Arch Allergy Immunol2005;137:73. CrossRef

21. ExleyM, TerhorstC, WilemanT. Structure, assembly and intracellular transport of the T cell receptor for antigen. Semin Immunol1991;3:283.

22. JuliusM, MarounCR, HaughnL. Distinct roles for CD4 and CD8 as co‐receptors in antigen receptor signalling. Immunol Today1993;14:177. CrossRef

23. SzaboSJ, KimST, CostaGL, et al.A novel transcription factor, T‐bet, directs Th1 lineage commitment. Cell2000;100:655. CrossRef

24. PulendranB, ArtisD. New paradigms in type 2 immunity. Science2012;337:431. CrossRef

25. WeaverCT, ElsonCO, FouserLA, et al.The Th‐17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol2013;8:477. CrossRef

26. SakaguchiS. Naturally arising Foxp3‐expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non‐self. Nat Immunol2005;6:345. CrossRef

27. FontenotJD, RudenskyAY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol2005;6:331. CrossRef

28. BluestoneJA, AbbasAK. Natural versus adaptive regulatory T cells. Nat Rev Immunol2003;3:253. CrossRef

29. McHughRS, ShevachEM. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ‐specific autoimmune disease. J Immunol2002;168:5979. CrossRef

30. MaulJ, LoddenkemperC, MundtP, et al.Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology2005;128:1868. CrossRef

31. MaloyKJ, SalaunL, CahillR, et al.CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine‐dependent mechanisms. J Exp Med2003;197:111. CrossRef

32. RuemmeleFM, MoesN, De SerreNP, et al.Clinical and molecular aspects of autoimmune enteropathy and immune dysregulation, polyendocrinopathy autoimmune enteropathy X‐linked syndrome. Curr Opin Gastroenterol2008;24:742. CrossRef

33. BrennanPJ, BriglM, BrennerMB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector function. Nat Rev Immunol2013;13:101. CrossRef

34. FussIJ, StroberW. The role of IL‐13 and NK Te cells in experimental and human ulcerative colitis. Mucosal Immunol2008;1(Suppl 1):S31. CrossRef

35. AdamsEJ, LuomaAM. The adaptable major histocompatibility complex (MHC) fold: structure and function of noclassical and class I‐like molecules. Annu Rev Immunol2013;31:529. CrossRef

36. BjorkmanPJ, SaperMA, SamraouiB, et al.The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature1987;329:512. CrossRef

37. BjorkmanPJ, SaperMA, SamraouiB, et al.Structure of the human class I histocompatibility antigen, HLA‐A2. Nature1987;329:506. CrossRef

38. RethM, HombachJ, WienandsJ, et al.The B‐cell antigen receptor complex. Immunol Today1991;12:196. CrossRef

39. HarnettMM, KatzE, FordCA. Differential signalling during B‐cell maturation. Immunol Lett2005;98:33. CrossRef

40. PoeJC, HasegawaM, TedderTF. CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction. Int Rev Immunol2001;20:739. CrossRef

41. WortisHH, BerlandR. Cutting edge commentary: origins of B‐1 cells. J Immunol2001;166:2163. CrossRef

42. CooperMD. Current concepts. B lymphocytes. Normal development and function. N Engl J Med1987;317:1452. CrossRef

43. SpitsH, Di SantoJP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol2011;12:21. CrossRef

44. Satoh‐TakayamaN, VosshenrichCA, Lesjean‐PottierS, et al.Microbial flora drives interleukin‐22 production in intestinal NKP46+cellsthat provide innate mucosal immune defenses. Immunity2008;29:958. CrossRef

45. PanjaA, MayerL. Antigen presentation in the intestine. Baillieres Clin Gastroenterology1996;10:407. CrossRef

46. MeradM, SatheP, HelftJ, et al.The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol2013;31:563. CrossRef

47. IwasakiA, MedzhitovR. Toll‐like receptor control of the adaptive immune responses. Nat Immunol2004;5:987. CrossRef

48. RescignoM, UrbanoM, ValzasinaB, et al.Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol2001;2:361. CrossRef

49. AnnackerO, CoombesJL, MalmstromV, et al.Essential role for CD103 in the T cell‐mediated regulation of experimental colitis. J Exp Med2005;202:1051. CrossRef

50. Johansson‐LindbomB, SvenssonM, PabstO, et al.Functional specialization of gut CD103+ dendritic cells in the regulation of tissue‐selective T cell homing. J Exp Med2005;202:1063. CrossRef

51. FournierBM, ParkosCA. The role of neutrophils during intestinal inflammation. Mucosal Immunol2012;5:354. CrossRef

52. FialkowL, WangY, DowneyGP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med2007;42:153. CrossRef

53. Yamamoto‐FurushoJK, KorzenikJR. Crohn's disease: innate immunodeficiency?World J Gastroenterol2006;12:6751.

54. JaeschkeH, HasegawaT. Role of neutrophils in acute inflammatory liver injury. Liver Int2006;26:912. CrossRef

55. MachJ, HshiehT, HsiehD, et al.Development of intestinal M cells. Immunol Rev2005;206:177. CrossRef

56. NeutraMR, FreyA, KraehenbuhlJP. Epithelial M cells: gateways for mucosal infection and immunization. Cell1996;86:345. CrossRef

57. TaylorRT, LugeringA, NewellKA, et al.Intestinal cryptopatch formation in mice requires lymphotoxin alpha and the lymphotoxin beta receptor. J Immunol2004;173:7183. CrossRef

58. SaitoH, KanamoriY, TakemoriT, et al.Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science1998;280:275. CrossRef

59. LorenzRG, NewberryRD. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann NY Acad Sci2004;1029:44. CrossRef

60. LorenzRG, ChaplinDD, McDonaldKG, et al.Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin‐sufficient B lymphocytes, lymphotoxin beta receptor, and TNF‐α receptor I function. J Immunol2003;170:5475. CrossRef

61. NeutraMR, MantisNJ, KraehenbuhlJP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol2001;2:1004. CrossRef

62. FarstadIN, NorsteinJ, BrandtzaegP. Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology1997;112:163. CrossRef

63. RimoldiM, ChieppaM, SalucciV, et al.Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol2005;6:507. CrossRef

64. DunkleyML, HusbandAJ. Distribution and functional characteristics of antigen‐specific helper T cells arising after Peyer's patch immunization. Immunology1987;61:475.

65. BienenstockJ, McDermottM, BefusD, et al.A common mucosal immunologic system involving the bronchus, breast and bowel. Adv Exp Med Biol1978;107:53. CrossRef

66. CebraJJ, KomisarJL, SchweitzerPA. CH isotype ‘switching’ during normal B‐lymphocyte development. Annu Rev Immunol1984;2:493. CrossRef

67. McGheeJR, MesteckyJ, DertzbaughMT, et al.The mucosal immune system: from fundamental concepts to vaccine development. Vaccine1992;10:75. CrossRef

68. SchieferdeckerHL, UllrichR, HirselandH, et al.T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. J Immunol1992;149:2816.

69. ZeitzM, QuinnTC, GraeffAS, et al.Mucosal T cells provide helper function but do not proliferate when stimulated by specific antigen in lymphogranuloma venereum proctitis in nonhuman primates. Gastroenterology1988;94:353.

70. CepekKL, ShawSK, ParkerCM, et al.Adhesion between epithelial cells and T lymphocytes mediated by E‐cadherin and the alpha E beta 7 integrin. Nature1994;372:190. CrossRef

71. MacDermottRP, FranklinGO, JenkinsKM, et al.Human intestinal mononuclear cells. I. Investigation of antibody‐dependent, lectin‐induced, and spontaneous cell‐mediated cytotoxic capabilities. Gastroenterology1980;78:47.

72. MacDermottRP, BragdonMJ, JenkinsKM, et al.Human intestinal mononuclear cells. II. Demonstration of a naturally occurring subclass of T cells which respond in the allogeneic mixed leukocyte reaction but do not effect cell‐mediated lympholysis. Gastroenterology1981;80:748.

73. MacDermottRP, BragdonMJ, KodnerIJ, et al.Deficient cell‐mediated cytotoxicity and hyporesponsiveness to interferon and mitogenic lectin activation by inflammatory bowel disease peripheral blood and intestinal mononuclear cells. Gastroenterology1986;90:6.

74. TarganS, BritvanL, KendalR, et al.Isolation of spontaneous and interferon inducible natural killer like cells from human colonic mucosa: lysis of lymphoid and autologous epithelial target cells. Clin Exp Immunol1983;54:14.

75. FiocchiC, TubbsRR, YoungmanKR. Human intestinal mucosal mononuclear cells exhibit lymphokine‐activated killer cell activity. Gastroenterology1985;88:625.

76. HoganPG, HapelAJ, DoeWF. Lymphokine‐activated and natural killer cell activity in human intestinal mucosa. J Immunol1985;135:1731.

77. ShanahanF, DeemR, NayersinaR, et al.Human mucosal T‐cell cytotoxicity. Gastroenterology1988;94:960.

78. MullerS, LoryJ, CorazzaN, et al.Activated CD4+ and CD8+ cytotoxic cells are present in increased numbers in the intestinal mucosa from patients with active inflammatory bowel disease. Am J Pathol1998;152:261.

79. KohneG, SchneiderT, ZeitzM. Special features of the intestinal lymphocytic system. Baillieres Clin Gastroenterol1996;10:427. CrossRef

80. BoirivantM, PicaR, DeMariaR, et al.Stimulated human lamina propria T cells manifest enhanced Fas‐mediated apoptosis. J Clin Invest1996;98:2616. CrossRef

81. MariniM, BamiasG, Rivera‐NievesJ, et al.TNF‐alpha neutralization ameliorates the severity of murine Crohn's‐like ileitis by abrogation of intestinal epithelial cell apoptosis. Proc Natl Acad Sci USA2003;100:8366. CrossRef

82. CraigSW, CebraJJ. Peyer's patches: an enriched source of precursors for IgA‐producing immunocytes in the rabbit. J Exp Med1971;134:188. CrossRef

83. MurrayPD, McKenzieDT, SwainSL, et al.Interleukin 5 and interleukin 4 produced by Peyer's patch T cells selectively enhance immunoglobulin A expression. J Immunol1987;139:2669.

84. LebmanDA, GriffinPM, CebraJJ. Relationship between expression of IgA by Peyer's patch cells and functional IgA memory cells. J Exp Med1987;166:1405. CrossRef

85. LebmanDA, CoffmanRL. The effects of IL‐4 and IL‐5 on the IgA response by murine Peyer's patch B cell subpopulations. J Immunol1988;141:2050.

86. HarrimanGR, KunimotoDY, ElliottJF, et al.The role of IL‐5 in IgA B cell differentiation. J Immunol1988;140:3033.

87. BeagleyKW, EldridgeJH, KiyonoH, et al.Recombinant murine IL‐5 induces high rate IgA synthesis in cycling IgA‐positive Peyer's patch B cells. J Immunol1988;141:2035.

88. OkahashiN, YamamotoM, VancottJL, et al.Oral immunization of interleukin‐4 (IL‐4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL‐6 and IL‐10 are associated with mucosal immunoglobulin A responses. Infect Immun1996;64:1516.

89. VanCottJL, StaatsHF, PascualDW, et al.Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J Immunol1996;156:1504.

90. MacDermottRP, StensonWF. Alterations of the immune system in ulcerative colitis and Crohn's disease. Adv Immunol1988;42:285. CrossRef

91. BrandtzaegP, SollidLM, ThranePS, et al.Lymphoepithelial interactions in the mucosal immune system. Gut1988;29:1116. CrossRef

92. BrandtzaegP, PrydzH. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature1984;311:71. CrossRef

93. BrandtzaegP, KorsrudFR. Significance of different J chain profiles in human tissues: generation of IgA and IgM with binding site for secretory component is related to the J chain expressing capacity of the total local immunocyte population, including IgG and IgD producing cells, and depends on the clinical state of the tissue. Clin Exp Immunol1984;58:709.

94. BrandtzaegP. Role of J chain and secretory component in receptor‐mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol1985;22:111. CrossRef

95. DelacroixDL, HodgsonHJ, McPhersonA, et al.Selective transport of polymeric immunoglobulin A in bile. Quantitative relationships of monomeric and polymeric immunoglobulin A, immunoglobulin M, and other proteins in serum, bile, and saliva. J Clin Invest1982;70:230. CrossRef

96. DelacroixDL, Furtado‐BarreiraG, de HemptinneB, et al.The liver in the IgA secretory immune system. Dogs, but not rats and rabbits, are suitable models for human studies. Hepatology1983;3:980. CrossRef

97. MazanecMB, KaetzelCS, LammME, et al.Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA1992;89:6901. CrossRef

98. YangPC, BerinMC, YuLC, et al.Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcepsilonRII). J Clin Invest2000;106:879. CrossRef

99. HaydayA, TheodoridisE, RamsburgE, et al.Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol2001;2:997. CrossRef

100. FergusonA. Intraepithelial lymphocytes of the small intestine. Gut1977;18:921. CrossRef

101. JarryA, Cerf‐BensussanN, BrousseN, et al.Subsets of CD3+ (T cell receptor alpha/beta or gamma/delta) and CD3– lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol1990;20:1097. CrossRef

102. ItoharaS, NakanishiN, KanagawaO, et al.Monoclonal antibodies specific to native murine T‐cell receptor gamma delta: analysis of gamma delta T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci USA1989;86:5094. CrossRef

103. StinglG, KoningF, YamadaH, et al.Thy‐1+ dendritic epidermal cells express T3 antigen and the T‐cell receptor gamma chain. Proc Natl Acad Sci USA1987;84:4586. CrossRef

104. AsarnowDM, KuzielWA, BonyhadiM, et al.Limited diversity of gamma delta antigen receptor genes of Thy‐1+ dendritic epidermal cells. Cell1988;55:837. CrossRef

105. EberlG, LittmanDR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science2004;305:248. CrossRef

106. BlumbergRS, YockeyCE, GrossGG, et al.Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple V beta T cell receptor genes. J Immunol1993;150:5144.

107. HoltmeierW, ChowersY, LumengA, et al.The delta T cell receptor repertoire in human colon and peripheral blood is oligoclonal irrespective of V region usage. J Clin Invest1995;96:1108. CrossRef

108. BalkSP, EbertEC, BlumenthalRL, et al.Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science1991;253:1411. CrossRef

109. GrossGG, SchwartzVL, StevensC, et al.Distribution of dominant T cell receptor beta chains in human intestinal mucosa. J Exp Med1994;180:1337. CrossRef

110. StraterJ, WellischI, RiedlS, et al.CD95 (APO‐1/Fas)‐mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology1997;113:160. CrossRef

111. BoismenuR, HavranWL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science1994;266:1253. CrossRef

112. CheroutreH, LambolezF, MucidaD. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol2011;11:445. CrossRef

113. KroemerG, MartinezC. Mechanisms of self tolerance. Immunol Today1992;13:401. CrossRef

114. KuhnR, LohlerJ, RennickD, et al.Interleukin‐10‐deficient mice develop chronic enterocolitis. Cell1993;75:263. CrossRef

115. SadlackB, MerzH, SchorleH, et al.Ulcerative colitis‐like disease in mice with a disrupted interleukin‐2 gene. Cell1993;75:253. CrossRef

116. StroberW, EhrhardtRO. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell1993;75:203. CrossRef

117. RathHC, HerfarthHH, IkedaJS, et al.Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA‐B27/human beta2 microglobulin transgenic rats. J Clin Invest1996;98:945. CrossRef

118. MeresseB, MalamutG, Cerf‐BensussanN. Celiac disease: an immunological jigsaw. Immunity2012;36:907. CrossRef

119. D'EliosMM, BergmanMP, AzzurriA, et al.H(+),K(+)‐ATPase (proton pump) is the target autoantigen of Th1‐type cytotoxic T cells in autoimmune gastritis. Gastroenterology2001;120:377. CrossRef

120. KagnoffMF. Oral tolerance. Monogr Allergy1988;24:222.

121. PabstO, MowatAM. Oral tolerance to food proteins. Mucosal Immunol2012;5:232. CrossRef

122. ChallacombeSJ, TomasiTBJr. Systemic tolerance and secretory immunity after oral immunization. J Exp Med1980;152:1459. CrossRef

123. CollinsSM. The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders. Gastroenterology1996;111:1683. CrossRef

124. HodgesK, ViswanathanVK, HechtG. Physiology of host–pathogen interactions. In: Johnson LR(ed). Physiology of the Gatrointestinal Tract, Vol. 2, 4th edn. Burlington, MA: Elsevier Academic Press; 2006: 1163. CrossRef

125. FournierBM, ParkosCA. The role of neutrophils during intestinal inflammation. Mucosal immunol2012;5:354. CrossRef

126. HensonPM, HensonJE, FittschenC. Degranulation and secretion of phagocytic cells. In: GallinJ, GoldsteinI, SnydermanR(eds). Inflammation: Basic Principles and Clinical Correlates, 2nd edn. New York: Raven Press; 1992: 511.

127. Van FurthR. Development and distribution of mononuclear phagocytes. In: Gallin J, Goldstein I, Synderman R(eds). Inflammation: Basic Principles and Clinical Correlates, 2nd edn. New York: Raven Press; 1992: 325.

128. PavliP, DoeWF. Intestinal macrophages. In: MacDermottRP, StensonWF(eds). Inflammatory Bowel Disease. New York: Elsevier; 1992: 177.

129. SaverymuttuSH, CamilleriM, ReesH, et al.Indium 111‐granulocyte scanning in the assessment of disease extent and disease activity in inflammatory bowel disease. A comparison with colonoscopy, histology, and fecal indium 111‐granulocyte excretion. Gastroenterology1986;90:1121.

130. SpringerTA. Adhesion receptors of the immune system. Nature1990;346:425. CrossRef

131. HartAL, NgSC, MannE, et al.Homing of immune cells: role in homeostasis and intestinal inflammation. Inflamm Bowel Dis2010;16:1969. CrossRef

132. LangerHF, ChavakisT. Leukocyte‐endothelial interactions in inflammation. J Cell Mol Med2009;13:1211. CrossRef

133. HerterJ, ZarbockA. Integrin regulation during leukocyte recruitment. J Immunol2013;190:4451. CrossRef

134. NashS, StaffordJ, MadaraJL. The selective and superoxideindependent disruption of intestinal epithelial tight junctions during leukocyte transmigration. Lab Invest1988;59:531.

135. NashS, StaffordJ, MadaraJL. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest1987;80:1104. CrossRef

136. ArseneauKO, CominelliF. Vercirnon for the treatment of Crohn's disease. Expert Opin Investing Drugs2013;22:907. CrossRef

137. BurnsRC, Rivera‐NievesJ, MoskalukCA, et al.Antibody blockade of ICAM‐1 and VCAM‐1 ameliorates inflammation in the SAMP‐1/Yit adoptive transfer model of Crohn's disease in mice. Gastroenterology2001;121:1428. CrossRef

138. HamamotoN, MaemuraK, HirataI, et al.Inhibition of dextran sulphate sodium (DSS)‐induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule‐1 (ELAM‐1) or intercellular adhesion molecule‐1 (ICAM‐1)). Clin Exp Immunol1999;117:462. CrossRef

139. YacyshynB, CheyWY, WedelMK, et al.A randomized, double‐masked, placebo‐controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn's disease. Clin Gastroenterol Hepatol2007;5:215. CrossRef

140. VegterS, TolleyK, Wilson WaterworthT, et al.Meta‐analysis using individual patient data: efficacy and durability of topical alicaforsen for the treatment of active ulcerative colitis. Aliment Pharmacol Ther2013;38:284. CrossRef

141. BickstonSJ, MuniyappaK. Natalizumab for the treatment of Crohn's disease. Exp Rev Clin Immunol2010;6:513. CrossRef

142. McCleanLP, Shea‐DonohueT, CrossRK. Vedolizumab for the treatment of ulcerative colitis and Crohn's disease. Immunotherapy2012;4:883. CrossRef

143. FurfaroS, BermanJS. The relation between cell migration and activation in inflammation: beyond adherence. Am J Respir Cell Mol Biol1992;7:248. CrossRef

144. GrishamMB, GrangerDN. Neutrophil‐mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci1988;33:6S. CrossRef

145. von RitterC, SekizukaE, GrishamMB, et al.The chemotactic peptide N‐formyl methionyl‐leucyl‐phenylalanine increases mucosal permeability in the distal ileum of the rat. Gastroenterology1988;95:651.

146. EckmannL, KagnoffMF, FiererJ. Epithelial cells secrete the chemokine interleukin‐8 in response to bacterial entry. Infect Immun1993;61:4569.

147. MorganEL, EmberJA, SandersonSD, et al.Anti‐C5a receptor antibodies. Characterization of neutralizing antibodies specific for a peptide, C5aR‐(9‐29), derived from the predicted amino‐terminal sequence of the human C5a receptor. J Immunol1993;151:377.

148. FradinA, ZirrolliJA, MacloufJ, et al.Platelet‐activating factor and leukotriene biosynthesis in whole blood. A model for the study of transcellular arachidonate metabolism. J Immunol1989;143:3680.

149. RoligAS, CarterJE, OttemannKM. Bacterial chemotaxis modulates host cell apoptosis to establish a T‐helper cell, type 17 (Th17)‐dominant immune response in Helicobacter pylori infection. Proc Natl Acad Sci U S A2011;108:19749. CrossRef

150. de BernardM, D'EliosMM. The immune modulating activity of the Helicobacter pylori HP‐NAP: friend or foe?Toxicon2010;56:1186. CrossRef

151. HarbordMW, MarksDJ, ForbesA, et al.Impaired neutrophil chemotaxis in Crohn's disease relates to reduced production of chemokines and can be augmented by granulocyte‐colony stimulating factor. Aliment Pharmacol Ther2006;24:651. CrossRef

152. YangSK, ChoiMS, KimOH, et al.The increased expression of an array of C‐X‐C and C‐C chemokines in the colonic mucosa of patients with ulcerative colitis: regulation by corticosteroids. Am J Gastroenterol2002;97:126. CrossRef

153. ColeAT, PilkingtonBJ, McLaughlanJ, et al.Mucosal factors inducing neutrophil movement in ulcerative colitis: the role of interleukin 8 and leukotriene B4. Gut1996;39:248. CrossRef

154. RobertsWG, SimonTJ, BerlinRG, et al.Leukotrienes in ulcerative colitis: results of a multicenter trial of a leukotriene biosynthesis inhibitor, MK‐591. Gastroenterology1997;112:725. CrossRef

155. VahediG, PoholekCA, HandTW, et al.Helper T‐cell identity and evolution of differential transcriptomes and epigenomes. Immunol Rev2013;252:24. CrossRef

156. NagataS, GolsteinP. The Fas death factor. Science1995;267:1449. CrossRef

157. El‐OmarEM, CarringtonM, ChowWH, et al.Interleukin‐1 polymorphisms associated with increased risk of gastric cancer. Nature2000;404:398. CrossRef

158. RutgeertsP, SandbornWJ, FeaganBG, et al.Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med2005;353:2462. CrossRef

159. TarganSR, HanauerSB, van DeventerSJ, et al.A short‐term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med1997;337:1029. CrossRef

160. PresentDH, RutgeertsP, TarganS, et al.Infliximab for the treatment of fistulas in patients with Crohn's disease. N Engl J Med1999;340:1398. CrossRef

161. HanauerSB, SandbornWJ, RutgeertsP, et al.Human anti‐tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC‐I trial. Gastroenterology2006;130:323. CrossRef

162. DaW, ZhuJ, WangL, et al.Efficacy and safety of certolizumab pegol for Crohn's disease: a systematic review and meta‐analysis. Adv Ther2013;30:541. CrossRef

163. WilliamsCJ, Peyrin‐BirouletL, FordAC. Systematic review with meta‐analysis: malignancies with anti‐tumour necrosis factor‐α therapy in inflammatory bowel disease. Aliment Pharmacol Ther2014;39:447. CrossRef

164. EberhartCE, DuboisRN. Eicosanoids and the gastrointestinal tract. Gastroenterology1995;109:285. CrossRef

165. WangD, MannJR, DuBoisRN. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology2005;128:1445. CrossRef

166. GuptaRA, DuboisRN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase‐2. Nat Rev Cancer2001;1:11. CrossRef

167. ArberN, EagleCJ, SpicakJ, et al.Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med2006;355:885. CrossRef

168. BertagnolliMM, EagleCJ, ZauberAG, et al.Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med2006;355:873. CrossRef

169. BresalierRS, SandlerRS, QuanH, et al.Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med2005;352:1092. CrossRef

170. SharonP, StensonWF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology1984;86:453.

171. HawkleyCJ, DubeLM, RountreeLV, et al.A trial of zileuton versus mesalazine or placebo in the maintenance of remission of ulcerative colitis. The European Zileuton Study Group for Ulcerative Colitis. Gastroenterology1997;112:718. CrossRef

172. SingerII, KawkaDW, SchloemannS, et al.Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology1998;115:297. CrossRef

173. RiehlTE, StensonWF. Platelet‐activating factor acetylhydrolases in Caco‐2 cells and epithelium of normal and ulcerative colitis patients. Gastroenterology1995;109:1826. CrossRef

174. NakamuraT, SakaguchiT, UnnoN, et al.Relationship between the platelet activating factor acetylhydrolasegene and intractability of ulcerative colitis. Dis Colon Rectum2002;45:389. CrossRef

175. SpiteM, NorlingLV, SummersL, et al.Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature2009;461:1287. CrossRef

176. KrishnamoorthyS, RecchiutiA, ChiangN, et al.Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A2010;107:1660. CrossRef

177. BentoAF, ClaudinoRF, DutraRC, et al.Omega‐3 fatty acid‐derived mediators 17(R)‐hydroxy docosahexaenoic acid, aspirin‐triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J Immunol2011;187:1957. CrossRef

178. KoliosG, ValatasV, WardSG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology2004;113:427. CrossRef

179. NathanC, XieQW. Nitric oxide synthases: roles, tolls, and controls. Cell1994;78:915. CrossRef

180. BredtDS, HwangPM, SnyderSH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature1990;347:768. CrossRef

181. TakahashiT. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol2003;38:421. CrossRef

182. DrapierJC, HibbsJBJr. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in Larginine‐dependent inhibition of mitochondrial iron‐sulfur enzymes in the macrophage effector cells. J Immunol1988;140:2829.

183. SingerII, KawkaDW, ScottS, et al.Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology1996;111:871. CrossRef

184. KoliosG, RooneyN, MurphyCT, et al.Expression of inducible nitric oxide synthase activity in human colon epithelial cells: modulation by T lymphocyte derived cytokines. Gut1998;43:56. CrossRef

185. KoliosG, ValatasV, WardSG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology2004;113:427. CrossRef

186. MillerMJ, Sadowska‐KrowickaH, ChotinaruemolS, et al.Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther1993;264:11.

187. HogaboamCM, JacobsonK, CollinsSM, et al.The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Physiol1995;268:G673.

188. RachmilewitzD, KarmeliF, OkonE, et al.Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut1995;37:247. CrossRef

189. ArmstrongAM, CampbellGR, GannonC, et al.Oral administration of inducible nitric oxide synthase inhibitors reduces nitric oxide synthesis but has no effect on the severity of experimental colitis. Scand J Gastroenterol2000;35:832. CrossRef

190. YoshidaY, IwaiA, ItohK, et al.Role of inducible nitric oxide synthase in dextran sulphate sodium‐induced colitis. Aliment Pharmacol Ther2000;14(Suppl 1):26. CrossRef

191. HosoiT, GotoH, ArisawaT, et al.Role of nitric oxide synthase inhibitor in experimental colitis induced by 2,4,6‐trinitrobenzene sulphonic acid in rats. Clin Exp Pharmacol Physiol2001;28:9. CrossRef

192. LaszloF, WhittleBJ, MoncadaS. Time‐dependent enhancement or inhibition of endotoxin‐induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol1994;111:1309. CrossRef

193. VallanceBA, DijkstraG, QiuB, et al.Relative contributions of NOS isoforms during experimental colitis: endothelial‐derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol2004;287:G865. CrossRef

194. BeckPL, XavierR, WongJ, et al.Paradoxical roles of different nitric oxide synthase isoforms in colonic injury. Am J Physiol Gastrointest Liver Physiol2004;286:G137. CrossRef

195. HoltugK, HansenMB, SkadhaugeE. Experimental studies of intestinal ion and water transport. Scand J Gastroenterol Suppl1996;216:95. CrossRef

196. KuwaharaA, CookeHJ. Tachykinin‐induced anion secretion in guinea pig distal colon: role of neural and inflammatory mediators. J Pharmacol Exp Ther1990;252:1.

197. CroweSE, SestiniP, PerdueMH. Allergic reactions of rat jejunal mucosa. Ion transport responses to luminal antigen and inflammatory mediators. Gastroenterology1990;99:74.

198. ZhangS, MyersS, CastroGA. Inhibition of anaphylaxis‐evoked intestinal fluid secretion by the dual application of an H1 antagonist and cyclooxygenase inhibitor. Gastroenterology1991;100:922.

199. Resta‐LenertS, BarrettKE. Probiotics and commensals reverse TNF‐alpha‐ and IFN‐gamma‐induced dysfunction in human intestinal epithelial cells. Gastroenterology2006;130:731. CrossRef

200. TurnerJR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol2009;9:799. CrossRef

201. FasanoA, Shea‐DonohueT. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol2005;2:416. CrossRef

202. ClayburghDR, ShenL, TurnerJR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest2004;84:282. CrossRef

203. ScottKG, MeddingsJB, KirkDR, et al.Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase‐dependent fashion. Gastroenterology2002;123:1179. CrossRef

204. YuhanR, KoutsourisA, SavkovicSD, et al.Enteropathogenic Escherichia coli‐induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology1997;113:1873. CrossRef

205. HayashiD, TamuraA, TanakaH, et al.Deficiency of claudin‐18 causes paracellular H+ leakage, up‐regulation of interleukin‐1β, and atrophic gastritis in mice. Gastroenterology2012;142:292. CrossRef

206. OlsonTS, ReuterBK, ScottKG, et al.The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med2006;203:541. CrossRef

207. KaserA, LeeAH, FrankeA, et al.XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell2008;134:743. CrossRef

208. ScottH, SollidLM, FausaO, et al.Expression of major histocompatibility complex class II subregion products by jejunal epithelium in patients with coeliac disease. Scand J Immunol1987;26:563. CrossRef

209. SollidLM, GaudernackG, MarkussenG, et al.Induction of various HLA class II molecules in a human colonic adenocarcinoma cell line. Scand J Immunol1987;25:175. CrossRef

210. HershbergRM, FramsonPE, ChoDH, et al.Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. J Clin Invest1997;100:204. CrossRef

211. BlandPW, WarrenLG. Antigen presentation by epithelial cells of the rat small intestine. II. Selective induction of suppressor T cells. Immunology1986;58:9.

212. MayerL, ShlienR. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med1987;166:1471. CrossRef

213. EckmannL, StensonWF, SavidgeTC, et al.Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. Bacterial entry induces epithelial prostaglandin h synthase‐2 expression and prostaglandin E2 and F2alpha production. J Clin Invest1997;100:296. CrossRef

214. SalzmanAL, Eaves‐PylesT, LinnSC, et al.Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithelial cells. Gastroenterology1998;114:93. CrossRef

215. LenardoMJ, BaltimoreD. NF‐kappa B: a pleiotropic mediator of inducible and tissue‐specific gene control. Cell1989;58:227. CrossRef

216. ShaWC, LiouHC, TuomanenEI, et al.Targeted disruption of the p50 subunit of NF‐kappa B leads to multifocal defects in immune responses. Cell1995;80:321. CrossRef

217. FraserCC. Exploring the positive and negative consequences of NF‐kappaB inhibition for the treatment of human disease. Cell Cycle2006;5:1160. CrossRef

218. HarrisG, KuoLeeR, ChenW. Role of Toll‐like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol2006;12:2149.

219. LavelleEC, MurphyC, O'NeillLA, et al.The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol2010;3:17. CrossRef

220. TohnoM, ShimosatoT, KitazawaH, et al.Toll‐like receptor 2 is expressed on the intestinal M cells in swine. Biochem Biophys Res Commun2005;330:547. CrossRef

221. CarioE, BrownD, McKeeM, et al.Commensal‐associated molecular patterns induce selective toll‐like receptor‐trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol2002;160:165. CrossRef

222. HornefMW, FrisanT, VandewalleA, et al.Toll‐like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med2002;195:559. CrossRef

223. HornefMW, NormarkBH, VandewalleA, et al.Intracellular recognition of lipopolysaccharide by toll‐like receptor 4 in intestinal epithelial cells. J Exp Med2003;198:1225. CrossRef

224. FurrieE, MacfarlaneS, ThomsonG, et al.Toll‐like receptors‐2, ‐3 and ‐4 expression patterns on human colon and their regulation by mucosal‐associated bacteria. Immunology2005;115:565. CrossRef

225. LiewFY, XuD, BrintEK, et al.Negative regulation of tolllike receptor‐mediated immune responses. Nat Rev Immunol2005;5:446. CrossRef

226. ReuterBK, PizarroTT. Commentary: the role of the IL‐18 system and other members of the IL‐1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe?Eur J Immunol2004;34:2347. CrossRef

227. CarioE. Toll‐like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis2010;16:1583. CrossRef

228. CarioE, PodolskyDK. Differential alteration in intestinal epithelial cell expression of toll‐like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun2000;68:7010. CrossRef

229. FranchimontD, VermeireS, El HousniH, et al.Deficient hostbacteria interactions in inflammatory bowel disease? The toll‐like receptor (TLR)‐4 Asp299Gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut2004;53:987. CrossRef

230. TorokHP, GlasJ, TonenchiL, et al.Polymorphisms of the lipopolysaccharide‐signaling complex in inflammatory bowel disease: association of a mutation in the Toll‐like receptor 4 gene with ulcerative colitis. Clin Immunol2004;112:85. CrossRef

231. DubuquoyL, JanssonEA, DeebS, et al.Impaired expression of peroxisome proliferator‐activated receptor gamma in ulcerative colitis. Gastroenterology2003;124:1265. CrossRef

232. SinghJC, CruickshankSM, NewtonDJ, et al.Toll‐like receptor‐mediated responses of primary intestinal epithelial cells during the development of colitis. Am J Physiol Gastrointest Liver Physiol2005;288:G514. CrossRef

233. MaslowskiKM, VieiraAT, NgA, et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature2009;461:1282. CrossRef

234. OlszakT, AnD, ZeissigS, et al.Microbial exposure during early life has persistent effects on natural killer T cell function. Science2012;336:489. CrossRef

235. MetcalfeDD, CostaJJ, BurdPR. Mast cells and basophils. In: GallinJ, GoldsteinI, SnydermanR(eds). Inflammation: Basic Principles and Clinical Correlates, 2nd edn. New York: Raven Press; 1992: 709.

236. GroschwitzKR, AhrensR, OsterfeldH, et al.Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4‐dependent mechanism. Proc Natl Acad Sci U S A2009;106:22381. CrossRef

237. KnightPA, WrightSH, LawrenceCE, et al.Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell‐specific granule chymase, mouse mast cell protease‐1. J Exp Med2000;192:1849. CrossRef

238. ThakurdasSM, MelicoffE, Sansores‐GarciaL, et al.The mast cell‐restricted tryptase mMCP‐6 has a critical immunoprotective role in bacterial infections. J Biol Chem2007;282:20809. CrossRef

239. HamiltonMJ, SinnamonMJ, LyngGD, et al.Essential role for mast cell tryptase in acute experimental colitis. Proc Natl Acad Sci U S A2011;108:290. CrossRef

240. CamilleriM, KatzkaDA. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol2012;302:G1075. CrossRef

241. Weinbrand‐GoichbergJ, SegalI, OvadiaA, et al.Eosinophilic esophagitis: an immune‐mediated esophageal disease. Immunol Res2013;56:249. CrossRef

242. BlanchardC, WangN, RothenbergME. Eosinophilic esophagitis: pathogenesis, genetics, and therapy. J Allergy Clin Immunol2006;118:1054. CrossRef

243. SpergelJM, AndrewsT, Brown‐WhitehornTF, et al.Treatment of eosinophilic esophagitis with specific food elimination diet directed by a combination of skin prick and patch tests. Ann Allergy Asthma Immunol2005;95:336. CrossRef

244. StraumannA, BauerM, FischerB, et al.Idiopathic eosinophilic esophagitis is associated with a T(H)2‐type allergic inflammatory response. J Allergy Clin Immunol2001;108:954. CrossRef

245. AboniaJP, BlanchardC, ButzBB, et al.Involvement of mast cells in eosinophilic esophagitis. J Allergy Clin Immunol2010;126:140. CrossRef

246. MishraA, SchlotmanJ, WangM, et al.Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J Leukoc Biol2007;81:916. CrossRef

247. BlanchardC, MishraA, Saito‐AkeiH, et al.Inhibition of human interleukin‐13‐induced respiratory and oesophageal inflammation by anti‐human‐interleukin‐13 antibody (CAT‐354). Clin Exp Allergy2005;35:1096. CrossRef

248. MishraA, RothenbergME. Intratracheal IL‐13 induces eosinophilic esophagitis by an IL‐5, eotaxin‐1, and STAT6‐dependent mechanism. Gastroenterology2003;125:1419. CrossRef

249. HoganSP, MishraA, BrandtEB, et al.A critical role for eotaxin in experimental oral antigen‐induced eosinophilic gastrointestinal allergy. Proc Natl Acad Sci U S A2000;97:6681. CrossRef

250. ZhuX, WangM, MaviP, et al.Interleukin‐15 expression is increased in human eosinophilic esophagitis and mediates pathogenesis in mice. Gastroenterology2010;139:182. CrossRef

251. AcevesSS, NewburyRO, DohilR, et al.Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol2007;119:206. CrossRef

252. BlanchardC, WangN, StringerKF, et al.Eotaxin‐3 and a uniquely conserved gene‐expression profile in eosinophilic esophagitis. J Clin Invest2006;116:536. CrossRef

253. NoelRJ, PutnamPE, RothenbergME. Eosinophilic esophagitis. N Engl J Med2004;351:940. CrossRef

254. Assa'adA. Eosinophilic esophagitis: association with allergic disorders. Gastrointest Endosc Clin N Am2008;18:119. CrossRef

255. MoawadFJ, VeerappanGR, LakeJM, et al.Correlation between eosinophilic oesophagitis and aeroallergens. Aliment Pharmacol Ther2010;31:509. CrossRef

256. MishraA, HoganSP, BrandtEB, et al.An etiological role for aeroallergens and eosinophils in experimental esophagitis. J Clin Invest2001;107:83. CrossRef

257. PrasadGA, AlexanderJA, SchleckCD, et al.Epidemiology of eosinophilic esophagitis over three decades in Olmsted County, Minnesota. Clin Gastroenterol Hepatol2009;7:1055. CrossRef

258. AlmansaC, KrishnaM, BuchnerAM, et al.Seasonal distribution in newly diagnosed cases of eosinophilic esophagitis in adults. Am J Gastroenterol2009;104:828. CrossRef

259. FoggMI, RuchelliE, SpergelJM. Pollen and eosinophilic esophagitis. J Allergy Clin Immunol2003;112:796. CrossRef

260. OnbasiK, SinAZ, DoganavsargilB, et al.Eosinophil infiltration of the oesophageal mucosa in patients with pollen allergy during the season. Clin Exp Allergy2005;35:1423. CrossRef

261. StraumannA, SchoepferAM. Therapeutic concepts in adult and paediatric eosinophilic oesophagitis. Nat Rev Gastroenterol Hepatol2012;9:697. CrossRef

262. RothenbergME. Biology and treatment of eosinophilic esophagitis. Gastroenterology2009;137:1238. CrossRef

263. DohilR, NewburyR, FoxL, et al.Oral viscous budesonide is effective in children with eosinophilic esophagitis in a randomized, placebo‐controlled trial. Gastroenterology2010;139:418. CrossRef

264. SteinML, CollinsMH, VillanuevaJM, et al.Anti‐IL‐5 (mepolizumab) therapy for eosinophilic esophagitis. J Allergy Clin Immunol2006;118:1312. CrossRef

265. StraumannA, ConusS, GrzonkaP, et al.Anti‐interleukin‐5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo‐controlled, double‐blind trial. Gut2010;59:21. CrossRef

266. GarrettJK, JamesonSC, ThomsonB, et al.Anti‐interleukin‐5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol2004;113:115. CrossRef

267. SteinML, VillanuevaJM, BuckmeierBK, et al.Anti‐IL‐5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL‐5 and IL‐5 receptor levels. J Allergy Clin Immunol2008;121:1473. CrossRef

268. TohBH, van DrielIR, GleesonPA. Pernicious anemia. N Engl J Med1997;337:1441. CrossRef

269. AlderuccioF, GleesonPA, BerzinsSP, et al.Expression of the gastric H/K‐ATPase alpha‐subunit in the thymus may explain the dominant role of the beta‐subunit in the pathogenesis of autoimmune gastritis. Autoimmunity1997;25:167. CrossRef

270. StummvollGH, DiPaoloRJ, HuterEN, et al.Th1, Th2, and Th17 effector T cell‐induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells. J Immunol2008;181:1908. CrossRef

271. TuE, BourgesD, GleesonPA, et al.Pathogenic T cells persist after reversal of autoimmune disease by immunosuppression with regulatory T cells. Eur J Immunol2013;43:1286. CrossRef

272. AngDK, BrodnickiTC, JordanMA, et al.Two genetic loci independently confer susceptibility to autoimmune gastritis. Int Immunol2007;19:1135. CrossRef

273. SalamaNR, HartungML, MullerA. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol2013;11:385. CrossRef

274. OhnishiN, YuasaH, TanakaS, et al.Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A2008;105:1003. CrossRef

275. CullenTW, MadsenJA, IvanovPL, et al.Characterization of unique modification of flagellar rod protein FlgG by Campylobacter jejuni lipid A phosphoethanolamine transferase, linking bacterial locomotion and antimicrobial peptide resistance. J Biol Chem2012;287:3326. CrossRef

276. MattssonA, TinnertA, HamletA, et al.Specific antibodies in sera and gastric aspirates of symptomatic and asymptomatic Helicobacter pylori‐infected subjects. Clin Diagn Lab Immunol1998;5:288.

277. MattssonA, Quiding‐JarbrinkM, LonrothH, et al.Antibody‐secreting cells in the stomachs of symptomatic and asymptomatic Helicobacter pylori‐infected subjects. Infect Immun1998;66:2705.

278. JostinsL, RipkeS, WeersmaRK, et al.Host‐microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature2012;491:119. CrossRef

279. OguraY, BonenDK, InoharaN, et al.A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature2001;411:603. CrossRef

280. HugotJP, ChamaillardM, ZoualiH, et al.Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease. Nature2001;411:599. CrossRef

281. BrantSR. Promises, delivery, and challenges of inflammatory bowel disease risk gene discovery. Clin Gastroenterol Hepatol2013;11:22. CrossRef

282. DiehlGE, LongmanRS, ZhangJX, et al.Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature2013;494:116. CrossRef

283. MatsumotoS, OkabeY, SetoyamaH, et al.Inflammatory bowel disease‐like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut1998;43:71. CrossRef

284. SchultzM, TonkonogySL, SellonRK, et al.IL‐2‐deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol1999;276:G1461.

285. RathHC. Role of commensal bacteria in chronic experimental colitis: lessons from the HLA‐B27 transgenic rat. Pathobiology2002;70:131. CrossRef

286. ZoccoMA, dal VermeLZ, CremoniniF, et al.Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther2006;23:1567. CrossRef

287. BibiloniR, FedorakRN, TannockGW, et al.VSL#3 probioticmixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol2005;100:1539. CrossRef

288. TursiA, BrandimarteG, GiorgettiGM, et al.Low‐dose balsalazide plus a high‐potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild‐to‐moderate ulcerative colitis. Med Sci Monit2004;10:PI126.

289. DickeWK, WeijersHA, Van De KamerJH. Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr1953;42:34. CrossRef

290. KagnoffMF. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest2007;117:41. CrossRef

291. MonteleoneI, MonteleoneG, Del Vecchio BlancoG, et al.Regulation of the T helper cell type 1 transcription factor T‐bet in coeliac disease mucosa. Gut2004;53:1090. CrossRef

292. LoukaAS, SollidLM. HLA in coeliac disease: unravelling the complex genetics of a complex disorder. Tissue Antigens2003;61:105. CrossRef

293. KumarV, WijmengaC, WithoffS. From genome‐wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol2012;34:567. CrossRef

294. KimCY, QuarstenH, BergsengE, et al.Structural basis for HLA‐DQ2‐mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA2004;101:4175. CrossRef

295. MolbergO, McAdamSN, KornerR, et al.Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut‐derived T cells in celiac disease. Nat Med1998;4:713. CrossRef

296. van de WalY, KooyY, van VeelenP, et al.Selective deamidation by tissue transglutaminase strongly enhances gliadin‐specific T cell reactivity. J Immunol1998;161:1585.

297. SahRP, ChariST. Autoimmune pancreatitis: an update on classification, diagnosis, natural history and management. Curr Gastroenterol Rep2012;14:95. CrossRef

298. UchidaK, OkazakiK, KonishiY, et al.Clinical analysis of autoimmune‐related pancreatitis. Am J Gastroenterol2000;95:2788. CrossRef

299. OkazakiK, UchidaK, OhanaM, et al.Autoimmune‐related pancreatitis is associated with autoantibodies and a Th1/Th2‐type cellular immune response. Gastroenterology2000;118:573. CrossRef

300. KawaS, OtaM, YoshizawaK, et al.HLA DRB10405‐DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology2002;122:1264. CrossRef

301. Mieli‐VerganiG, VerganiD. Autoimmune hepatitis. Nat Rev Gastroenterol Hepatol2011;8:320. CrossRef

302. MartinsEB, GrahamAK, ChapmanRW, et al.Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology1996;23:988.

303. ZhaoL, TangY, YouZ, et al.Interleukin‐17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin‐6 expression. PLoS ONE2011;6:e18909. CrossRef

304. DonaldsonPT. Genetics in autoimmune hepatitis. Semin Liver Dis2002;22:353. CrossRef

305. DonaldsonPT. Genetics of liver disease: immunogenetics and disease pathogenesis. Gut2004;53:599. CrossRef

306. CzajaAJ, DonaldsonPT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev2000;174:250. CrossRef

307. FainboimL, MarcosY, PandoM, et al.Chronic active autoimmune hepatitis in children. Strong association with a particular HLA‐DR6 (DRB1*1301) haplotype. Hum Immunol1994;41:146. CrossRef

308. GossardAA, LindorKD. Autoimmune hepatitis: a review. J Gastroenterol2012;47:498. CrossRef

309. KerkarN, ChoudhuriK, MaY, et al.Cytochrome P4502D6(193‐212): a new immunodominant epitope and target of virus/self cross‐reactivity in liver kidney microsomal autoantibody type 1‐positive liver disease. J Immunol2003;170:1481. CrossRef

310. AokiCA, BowlusCL, GershwinME. The immunobiology of primary sclerosing cholangitis. Autoimmun Rev2005;4:137. CrossRef

311. MelumE, FrankeA, SchrammC, et al.Genome‐wide association analysis in primary sclerosing cholangitis identifies two non‐HLA susceptibility loci. Nat Genet2011;43:17. CrossRef

312. NaessS, ShiryaevA, HovJR, et al.Genetics in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol2012;36:325. CrossRef

313. JanseM, LambertsLE, FrankeL, et al.Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology2011;53:1977. CrossRef

314. KarlsenTH, FrankeA, MelumE, et al.Genome‐wide association analysis in primary sclerosing cholangitis. Gastroenterology2010;138:1102. CrossRef

315. OlssonR, BjornssonE, BackmanL, et al.Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol1998;28:426. CrossRef

316. OrthT, KellnerR, DiekmannO, et al.Identification and characterization of autoantibodies against catalase and alpha‐enolase in patients with primary sclerosing cholangitis. Clin Exp Immunol1998;112:507. CrossRef

317. XuB, BroomeU, EriczonBG, et al.High frequency of autoantibodies in patients with primary sclerosing cholangitis that bind biliary epithelial cells and induce expression of CD44 and production of interleukin 6. Gut2002;51:120. CrossRef

318. GrantAJ, LalorPF, SalmiM, et al.Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet2002;359:150. CrossRef

319. KaplanMM, GershwinME. Primary biliary cirrhosis. N Engl J Med2005;353:1261. CrossRef

320. LiuX, InvernizziP, LuY, et al.Genome‐wide meta‐analyses identify three loci associated with primary biliary cirrhosis. Nat Genet2010;42:658. CrossRef