Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Epithelia and gastrointestinal function

1. TurkE, ZabelB, MundlosS, et al.Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature1991;350:354. CrossRef

2. TurnerJR, LencerWI, CarlsonS, et al.Carboxy‐terminal vesicular stomatitis virus G protein‐tagged intestinal Na+‐dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression. J Biol Chem1996;271:7738. CrossRef

3. JungD, FantinAC, ScheurerU, et al.Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut2004;53:78. CrossRef

4. KellettGL, Brot‐LarocheE, MaceOJ, et al.Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr2008;28:35. CrossRef

5. WadaM, TamuraA, TakahashiN, et al.Loss of claudins 2 and 15 from mice causes defects in paracellular Na(+) flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology2013;144:369. CrossRef

6. DugganC, FontaineO, PierceNF, et al.Scientific rationale for a change in the composition of oral rehydration solution. JAMA2004;291:2628. CrossRef

7. HuntJB, ElliottEJ, FaircloughPD, et al.Water and solute absorption from hypotonic glucose‐electrolyte solutions in human jejunum. Gut1992;33:479. CrossRef

8. JacobLS, WuX, DodgeME, et al.Genome‐wide RNAi screen reveals disease‐associated genes that are common to Hedgehog and Wnt signaling. Sci Signal2011;4:ra4. CrossRef

9. SpicerJ, RayterS, YoungN, et al.Regulation of the Wnt signalling component PAR1A by the Peutz‐Jeghers syndrome kinase LKB1. Oncogene2003;22:4752. CrossRef

10. LaiC, RobinsonJ, ClarkS, et al.Elevation of WNT5A expression in polyp formation in Lkb1+/‐ mice and Peutz–Jeghers syndrome. J Pathol2011;223:584. CrossRef

11. MiyoshiH, AjimaR, LuoCT, et al.Wnt5a potentiates TGF‐beta signaling to promote colonic crypt regeneration after tissue injury. Science2012;338:108. CrossRef

12. KongkanuntnR, BubbVJ, SansomOJ, et al.Dysregulated expression of beta‐catenin marks early neoplastic change in Apc mutant mice, but not all lesions arising in Msh2 deficient mice. Oncogene1999;18:7219. CrossRef

13. MatsumineA, OgaiA, SendaT, et al.Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science1996;272:1020. CrossRef

14. MorinPJ, SparksAB, KorinekV, et al.Activation of beta‐catenin‐Tcf signaling in colon cancer by mutations in beta‐catenin or APC. Science1997;275:1787. CrossRef

15. SuLK, VogelsteinB, KinzlerKW. Association of the APC tumor suppressor protein with catenins. Science1993;262:1734. CrossRef

16. GuilfordP, HopkinsJ, HarrawayJ, et al.E‐cadherin germline mutations in familial gastric cancer. Nature1998;392:402. CrossRef

17. MandelLJ, BacallaoR, ZampighiG. Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature1993;361:552. CrossRef

18. UmedaK, IkenouchiJ, Katahira‐TayamaS, et al.ZO‐1 and ZO‐2 independently determine where claudins are polymerized in tight‐junction strand formation. Cell2006;126:741. CrossRef

19. MaitreJL, HeisenbergCP. Three functions of cadherins in cell adhesion. Curr Biol2013;23:R626. CrossRef

20. BrieherWM, YapAS. Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol2013;25:39. CrossRef

21. GuillotC, LecuitT. Mechanics of epithelial tissue homeostasis and morphogenesis. Science2013;340:1185. CrossRef

22. MaiersJL, PengX, FanningAS, et al.ZO‐1 recruitment to alpha‐catenin: a novel mechanism for coupling the assembly of tight junctions to adherens junctions. J Cell Sci2013;126:3904. CrossRef

23. MarchiandoAM, GrahamWV, TurnerJR. Epithelial barriers in homeostasis and disease. Annu Rev Pathol2010;5:119. CrossRef

24. TurnerJR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol2009;9:799. CrossRef

25. BrookeMA, NitoiuD, KelsellDP. Cell‐cell connectivity: desmosomes and disease. J Pathol2012;226:158. CrossRef

26. HabtezionA, ToivolaDM, ButcherEC, et al.Keratin‐8‐deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci2005;118(Pt 9):1971. CrossRef

27. TaoGZ, StrnadP, ZhouQ, et al.Analysis of keratin polypeptides 8 and 19 variants in inflammatory bowel disease. Clin Gastroenterol Hepatol2007;5:857. CrossRef

28. Tran Van NhieuG, ClairC, BruzzoneR, et al.Connexin‐dependent inter‐cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol2003;5:720. CrossRef

29. DubinaMV, IatckiiNA, PopovDE, et al.Connexin 43, but not connexin 32, is mutated at advanced stages of human sporadic colon cancer. Oncogene2002;21:4992. CrossRef

30. HanY, ZhangPJ, ChenT, et al.Connexin43 expression increases in the epithelium and stroma along the colonic neoplastic progression pathway: implications for its oncogenic role. Gastroenterol Res Pract2011;2011:561719.

31. KellerP, ToomreD, DiazE, et al.Multicolour imaging of post‐Golgi sorting and trafficking in live cells. Nat Cell Biol2001;3:140. CrossRef

32. NelsonWJ, YeamanC. Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends Cell Biol2001;11:483. CrossRef

33. HaseK, NakatsuF, OhmaeM, et al.AP‐1B‐mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterology2013;145:625. CrossRef

34. TakahashiD, HaseK, KimuraS, et al.The epithelia‐specific membrane trafficking factor AP‐1B controls gut immune homeostasis in mice. Gastroenterology2011;141:621. CrossRef

35. ForteJG, ZhuL. Apical recycling of the gastric parietal cell H,K‐ATPase. Annu Rev Physiol2010;72:273. CrossRef

36. PolishchukR, Di PentimaA, Lippincott‐SchwartzJ. Delivery of raft‐associated, GPI‐anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol2004;6:297. CrossRef

37. SchuckS, SimonsK. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci2004;117(Pt 25):5955. CrossRef

38. BreuzaL, GarciaM, DelgrossiMH, et al.Role of the membrane‐proximal O‐glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells. Exp Cell Res2002;273:178. CrossRef

39. CasanovaJE, BreitfeldPP, RossSA, et al.Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science1990;248:742. CrossRef

40. MacphersonAJ, GeukingMB, SlackE, et al.The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev2012;245:132. CrossRef

41. NeischAL, FehonRG. Ezrin, Radixin and Moesin: key regulators of membrane‐cortex interactions and signaling. Curr Opin Cell Biol2011;23:377. CrossRef

42. GarbettD, BretscherA. PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. J Cell Biol2012;198:195. CrossRef

43. MonterisiS, FaviaM, GuerraL, et al.CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci2012;125(Pt 5):1106. CrossRef

44. YangJ, SinghV, ChaB, et al.NHERF2 protein mobility rate is determined by a unique C‐terminal domain that is also necessary for its regulation of NHE3 protein in OK cells. J Biol Chem2013;288:16960. CrossRef

45. LinR, MurtazinaR, ChaB, et al.D‐glucose acts via SGLT1 to increase NHE3 in mouse jejunal brush border by a NHERF2‐dependent process. Gastroenterology2010;140:560. CrossRef

46. NarenAP, CobbB, LiC, et al.A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin‐binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci U S A2003;100:342. CrossRef

47. SitaramanSV, WangL, WongM, et al.The adenosine 2b receptor is recruited to the plasma membrane and associates with E3KARP and Ezrin upon agonist stimulation. J Biol Chem2002;277:33188. CrossRef

48. CapuanoP, BacicD, StangeG, et al.Expression and regulation of the renal Na/phosphate cotransporter NaPi‐IIa in a mouse model deficient for the PDZ protein PDZK1. Pflugers Arch2005;449:392. CrossRef

49. BenharougaM, SharmaM, SoJ, et al.The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia. J Biol Chem2003;278:22079. CrossRef

50. SchubertML. Gastric exocrine and endocrine secretion. Curr Opin Gastroenterol2009;25:529. CrossRef

51. ZhaoH, ShiueH, PalkonS, et al.Ezrin regulates NHE3 translocation and activation after Na+‐glucose cotransport. Proc Natl Acad Sci U S A2004;101:9485. CrossRef

52. SaotomeI, CurtoM, McClatcheyAI. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell2004;6:855. CrossRef

53. WildtS, MadsenJL, RumessenJJ. Small‐bowel permeability in collagenous colitis. Scand J Gastroenterol2006;41:1044. CrossRef

54. BurgelN, BojarskiC, MankertzJ, et al.Mechanisms of diarrhea in collagenous colitis. Gastroenterology2002;123:433. CrossRef

55. JohanssonME, SjovallH, HanssonGC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol2013;10:352. CrossRef

56. JohanssonME, PhillipsonM, PeterssonJ, et al.The inner of the two Muc2 mucin‐dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A2008;105:15064. CrossRef

57. McGuckinMA, LindenSK, SuttonP, et al.Mucin dynamics and enteric pathogens. Nat Rev Microbiol2011;9:265. CrossRef

58. HasnainSZ, TauroS, DasI, et al.IL‐10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology2013;144:357. CrossRef

59. KrimiRB, KotelevetsL, DubuquoyL, et al.Resistin‐like molecule beta regulates intestinal mucous secretion and curtails TNBS‐induced colitis in mice. Inflamm Bowel Dis2008;14:931. CrossRef

60. Van der SluisM, De KoningBA, De BruijnAC, et al.Muc2‐deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology2006;131:117. CrossRef

61. EinerhandAW, RenesIB, MakkinkMK, et al.Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J Gastroenterol Hepatol2002;14:757. CrossRef

62. MoehleC, AckermannN, LangmannT, et al.Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med2006;84:1055. CrossRef

63. ShaoulR, OkadaY, CutzE, et al.Colonic expression of MUC2, MUC5AC, and TFF1 in inflammatory bowel disease in children. J Pediatr Gastroenterol Nutr2004;38:488. CrossRef

64. GersemannM, BeckerS, KublerI, et al.Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis. Differentiation2009;77:84. CrossRef

65. JohansenFE, KaetzelCS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol2011;4:598. CrossRef

66. BrunoME, FrantzAL, RogierEW, et al.Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF‐kappaB pathways in intestinal epithelial cells. Mucosal Immunol2011;4:468. CrossRef

67. HeW, LadinskyMS, Huey‐TubmanKE, et al.FcRn‐mediated antibody transport across epithelial cells revealed by electron tomography. Nature2008;455:542. CrossRef

68. BakerK, QiaoSW, KuoT, et al.Immune and non‐immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol2009;31:223. CrossRef

69. Ben SuleimanY, YoshidaM, NishiumiS, et al.Neonatal Fc receptor for IgG (FcRn) expressed in the gastric epithelium regulates bacterial infection in mice. Mucosal Immunol2012;5:87. CrossRef

70. MontroseMH. Choosing sides in the battle against gastric acid. J Clin Invest2001;108:1743. CrossRef

71. FurukawaO, HirokawaM, ZhangL, et al.Mechanism of augmented duodenal HCO(3)(‐) secretion after elevation of luminal CO(2). Am J Physiol Gastrointest Liver Physiol2005;288:G557. CrossRef

72. AkibaY, GhayouriS, TakeuchiT, et al.Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. Gastroenterology2006;131:142. CrossRef

73. BevinsCL, SalzmanNH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol2011;9:356. CrossRef

74. CleversHC, BevinsCL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol2013;75:289. CrossRef

75. SalzmanNH. Defensins versus bacteria: not just antibiotics anymore. Gastroenterology2008;134:2174. CrossRef

76. SalzmanNH, HungK, HaribhaiD, et al.Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol2010;11:76. CrossRef

77. CadwellK, LiuJY, BrownSL, et al.A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature2008;456:259. CrossRef

78. FellermannK, StangeDE, SchaeffelerE, et al.A chromosome 8 gene‐cluster polymorphism with low human beta‐defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet2006;79:439. CrossRef

79. MeischJP, NishimuraM, VogelRM, et al.Human beta‐defensin 3 peptide is increased and redistributed in Crohn's ileitis. Inflamm Bowel Dis2013;19:942. CrossRef

80. ManSM, KaakoushNO, MitchellHM. The role of bacteria and pattern‐recognition receptors in Crohn's disease. Nat Rev Gastroenterol Hepatol2011;8:152. CrossRef

81. MartinMG, TurkE, LostaoMP, et al.Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose‐galactose malabsorption. Nat Genet1996;12:216. CrossRef

82. BerglundJJ, RieglerM, ZolotarevskyY, et al.Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na+‐glucose cotransport. Am J Physiol Gastrointest Liver Physiol2001;281:G1487.

83. MadaraJL, PappenheimerJR. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol1987;100:149. CrossRef

84. ClayburghDR, BarrettTA, TangY, et al.Epithelial myosin light chain kinase‐dependent barrier dysfunction mediates T cell activation‐induced diarrhea in vivo. J Clin Invest2005;115:2702. CrossRef

85. TurnerJR, RillBK, CarlsonSL, et al.Physiological regulation of epithelial tight junctions is associated with myosin light‐chain phosphorylation. Am J Physiol1997;273(4 Pt 1):C1378.

86. WeberCR, RaleighDR, SuL, et al.Epithelial myosin light chain kinase activation induces mucosal interleukin‐13 expression to alter tight junction ion selectivity. J Biol Chem2010;285:12037. CrossRef

87. Van ItallieCM, AndersonJM. The molecular physiology of tight junction pores. Physiology (Bethesda)2004;19:331. CrossRef

88. Van ItallieCM, FanningAS, AndersonJM. Reversal of charge selectivity in cation or anion‐selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol2003;285:F1078. CrossRef

89. ColegioOR, Van ItallieC, RahnerC, et al.Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol2003;284:C1346. CrossRef

90. YuAS, ChengMH, AngelowS, et al.Molecular basis for cation selectivity in claudin‐2‐based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol2009;133:111. CrossRef

91. SimonDB, LuY, ChoateKA, et al.Paracellin‐1, a renal tight junction protein required for paracellular Mg2+ resorption. Science1999;285:103. CrossRef

92. KausalyaPJ, AmashehS, GunzelD, et al.Disease‐associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin‐16. J Clin Invest2006;116:878. CrossRef

93. HouJ, ReniguntaA, KonradM, et al.Claudin‐16 and claudin‐19 interact and form a cation‐selective tight junction complex. J Clin Invest2008;118:619.

94. KonradM, SchallerA, SeelowD, et al.Mutations in the tight‐junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet2006;79:949. CrossRef

95. MullerD, KausalyaPJ, Claverie‐MartinF, et al.A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO‐1 and results in lysosomal mistargeting. Am J Hum Genet2003;73:1293. CrossRef

96. HolmesJL, Van ItallieCM, RasmussenJE, et al.Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns2006;6:581. CrossRef

97. PrasadS, MingrinoR, KaukinenK, et al.Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest2005;85:1139. CrossRef

98. HellerF, FlorianP, BojarskiC, et al.Interleukin‐13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology2005;129:550. CrossRef

99. ZeissigS, BurgelN, GunzelD, et al.Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut2007;56:61. CrossRef

100. WeberCR, TurnerJR. Inflammatory bowel disease: is it really just another break in the wall?Gut2007;56:6. CrossRef

101. WeberCR, NalleSC, TretiakovaM, et al.Claudin‐1 and claudin‐2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest2008;88:1110. CrossRef

102. RosenthalR, MilatzS, KrugSM, et al.Claudin‐2, a component of the tight junction, forms a paracellular water channel. J Cell Sci2010;123(Pt 11):1913. CrossRef

103. MutoS, HataM, TaniguchiJ, et al.Claudin‐2‐deficient mice are defective in the leaky and cation‐selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A2010;107:8011. CrossRef

104. TamuraA, HayashiH, ImasatoM, et al.Loss of claudin‐15, but not claudin‐2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology2011;140:913. CrossRef

105. TamuraA, KitanoY, HataM, et al.Megaintestine in claudin‐15‐deficient mice. Gastroenterology2008;134:523. CrossRef

106. VerkmanAS. Aquaporins in clinical medicine. Annu Rev Med2012;63:303. CrossRef

107. NodaY, SoharaE, OhtaE, et al.Aquaporins in kidney pathophysiology. Nat Rev Nephrol2010;6:168. CrossRef

108. EtoK, NodaY, HorikawaS, et al.Phosphorylation of aquaporin‐2 regulates its water permeability. J Biol Chem2010;285:40777. CrossRef

109. GaoR, YanX, ZhengC, et al.AAV2‐mediated transfer of the human aquaporin‐1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther2011;18:38. CrossRef

110. TipsmarkCK, SorensenKJ, MadsenSS. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol2010;213:368. CrossRef

111. HardinJA, WallaceLE, WongJF, et al.Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn's disease and infectious colitis. Cell Tissue Res2004;318:313. CrossRef

112. IkarashiN, BabaK, UshikiT, et al.The laxative effect of bisacodyl is attributable to decreased aquaporin‐3 expression in the colon induced by increased PGE2 secretion from macrophages. Am J Physiol Gastrointest Liver Physiol2011;301:G887. CrossRef

113. LaforenzaU, MiceliE, GastaldiG, et al.Solute transporters and aquaporins are impaired in celiac disease. Biol Cell2010;102:457. CrossRef

114. SpitzJ, HechtG, TaverasM, et al.The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology1994;106:35.

115. MeinildA, KlaerkeDA, LooDD, et al.The human Na+‐glucose cotransporter is a molecular water pump. J Physiol1998;508(Pt 1):15. CrossRef

116. GagnonMP, BissonnetteP, DeslandesLM, et al.Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Biophys J2004;86(1 Pt 1):125. CrossRef

117. DuquettePP, BissonnetteP, LapointeJY. Local osmotic gradients drive the water flux associated with Na+/glucose cotransport. Proc Natl Acad Sci U S A2001;98:3796. CrossRef

118. PappenheimerJR, ReissKZ. Contribution of solvent drag through intercellular‐junctions to absorption of nutrients by the small‐intestine of the rat. J Membr Biol1987;100:123. CrossRef

119. FihnBM, SjoqvistA, JodalM. Permeability of the rat small intestinal epithelium along the villus‐crypt axis: effects of glucose transport. Gastroenterology2000;119:1029. CrossRef

120. ClayburghDR, MuschMW, LeitgesM, et al.Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF‐mediated diarrhea in vivo. J Clin Invest2006;116:2682. CrossRef

121. TurnerJR, ClayburghDR, MuschMW, et al.Response to field. J Clin Invest2006;116:3088. CrossRef

122. FieldM. T cell activation alters intestinal structure and function. J Clin Invest2006;116:2580. CrossRef

123. MarinariE, MehonicA, CurranS, et al.Live‐cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature2012;484:542. CrossRef

124. EisenhofferGT, LoftusPD, YoshigiM, et al.Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature2012;484:546. CrossRef

125. MadaraJL. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol1990;116:177. CrossRef

126. MarchiandoAM, ShenL, GrahamWV, et al.The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology2011;140:1208e1. CrossRef

127. GuanY, WatsonAJ, MarchiandoAM, et al.Redistribution of the tight junction protein ZO‐1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol2011;300:C1404. CrossRef

128. MadaraJL, CarlsonS. Supraphysiologic L‐tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J Clin Invest1991;87:454. CrossRef

129. AtisookK, MadaraJL. An oligopeptide permeates intestinal tight junctions at glucose‐elicited dilatations. Gastroenterology1991;100:719.

130. TurnerJR, MadaraJL. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na+‐coupled nutrient transport. Gastroenterology1995;109:1391. CrossRef

131. MeddingsJB, WestergaardH. Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin Sci (Lond)1989;76:403. CrossRef

132. TurnerJR, CohenDE, MrsnyRJ, et al.Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by Na+‐glucose cotransport. Dig Dis Sci2000;45:2122. CrossRef

133. PappenheimerJR, DahlCE, KarnovskyML, et al.Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci U S A1994;91:1942. CrossRef

134. PalmerDL, KosterFT, IslamAF, et al.Comparison of sucrose and glucose in the oral electrolyte therapy of cholera and other severe diarrheas. N Engl J Med1977;297:1107. CrossRef

135. RamakrishnaBS, VenkataramanS, SrinivasanP, et al.Amylase‐resistant starch plus oral rehydration solution for cholera. N Engl J Med2000;342:308. CrossRef

136. KammKE, StullJT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem2001;276:4527. CrossRef

137. ClayburghDR, RosenS, WitkowskiED, et al.A differentiation‐dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem2004;279:55506. CrossRef

138. GrahamWV, WangF, ClayburghDR, et al.Tumor necrosis factor‐induced long myosin light chain kinase transcription is regulated by differentiation‐dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem2006;281:26205. CrossRef

139. YinF, HoggattAM, ZhouJ, et al.130‐kDa smooth muscle myosin light chain kinase is transcribed from a CArG‐dependent, internal promoter within the mouse mylk gene. Am J Physiol Cell Physiol2006;290:C1599. CrossRef

140. ShenL, BlackED, WitkowskiED, et al.Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci2006;119(Pt 10):2095. CrossRef

141. YuD, MarchiandoAM, WeberCR, et al.MLCK‐dependent exchange and actin binding region‐dependent anchoring of ZO‐1 regulate tight junction barrier function. Proc Natl Acad Sci U S A2010;107:8237. CrossRef

142. ShenL, WeberCR, TurnerJR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol2008;181:683. CrossRef

143. OdenwaldMA, TurnerJR. Intestinal permeability defects: is it time to treat?Clin Gastroenterol Hepatol2013;11:1075. CrossRef

144. EllisonCA, NatuikSA, McIntoshAR, et al.The role of interferon‐gamma, nitric oxide and lipopolysaccharide in intestinal graft‐versus‐host disease developing in F1‐hybrid mice. Immunology2003;109:440. CrossRef

145. ZhaoY, LiuQ, YangL, et al.TLR4 inactivation protects from graft‐versus‐host disease after allogeneic hematopoietic stem cell transplantation. Cell Mol Immunol2013;10:165. CrossRef

146. GuoS, Al‐SadiR, SaidHM, et al.Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR‐4 and CD14. Am J Pathol2013;182:375. CrossRef

147. Dyavar ShettyR, VeluV, TitanjiK, et al.PD‐1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques. J Clin Invest2012;122:1712. CrossRef

148. CicconeEJ, ReadSW, MannonPJ, et al.Cycling of gut mucosal CD4+ T cells decreases after prolonged anti‐retroviral therapy and is associated with plasma LPS levels. Mucosal Immunol2010;3:172. CrossRef

149. DillonSM, ManuzakJA, LeoneAK, et al.HIV‐1 infection of human intestinal lamina propria CD4+ T cells in vitro is enhanced by exposure to commensal Escherichia coli. J Immunol2012;189:885. CrossRef

150. CanaryLA, VintonCL, MorcockDR, et al.Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus‐infected pigtail macaques. J Immunol2013;190:2959. CrossRef

151. DuerksenDR, Wilhelm‐BoylesC, ParryDM. Intestinal permeability in long‐term follow‐up of patients with celiac disease on a gluten‐free diet. Dig Dis Sci2005;50:785. CrossRef

152. Vazquez‐RoqueMI, CamilleriM, SmyrkT, et al.A controlled trial of gluten‐free diet in patients with irritable bowel syndrome‐diarrhea: effects on bowel frequency and intestinal function. Gastroenterology2013;144:903e3. CrossRef

153. WyattJ, VogelsangH, HublW, et al.Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet1993;341:1437. CrossRef

154. D'IncaR, Di LeoV, CorraoG, et al.Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am J Gastroenterol1999;94:2956. CrossRef

155. HollanderD, VadheimCM, BrettholzE, et al.Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann Intern Med1986;105:883. CrossRef

156. BuhnerS, BuningC, GenschelJ, et al.Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?Gut2006;55:342. CrossRef

157. MayGR, SutherlandLR, MeddingsJB. Is small intestinal permeability really increased in relatives of patients with Crohn's disease?Gastroenterology1993;104:1627.

158. SuenaertP, BulteelV, VermeireS, et al.Hyperresponsiveness of the mucosal barrier in Crohn's disease is not tumor necrosis factor‐dependent. Inflamm Bowel Dis2005;11:667. CrossRef

159. HollanderD. Crohn's disease–a permeability disorder of the tight junction?Gut1988;29:1621. CrossRef

160. SuenaertP, BulteelV, LemmensL, et al.Anti‐tumor necrosis factor treatment restores the gut barrier in Crohn's disease. Am J Gastroenterol2002;97:2000. CrossRef

161. WangF, GrahamWV, WangY, et al.Interferon‐gamma and tumor necrosis factor‐alpha synergize to induce intestinal epithelial barrier dysfunction by up‐regulating myosin light chain kinase expression. Am J Pathol2005;166:409. CrossRef

162. WangF, SchwarzBT, GrahamWV, et al.IFN‐gamma‐induced TNFR2 expression is required for TNF‐dependent intestinal epithelial barrier dysfunction. Gastroenterology2006;131:1153. CrossRef

163. TaylorCT, DzusAL, ColganSP. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. Gastroenterology1998;114:657. CrossRef

164. MarchiandoAM, ShenL, GrahamWV, et al.Caveolin‐1‐dependent occludin endocytosis is required for TNF‐induced tight junction regulation in vivo. J Cell Biol2010;189:111. CrossRef

165. ZolotarevskyY, HechtG, KoutsourisA, et al.A membrane‐permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology2002;123:163. CrossRef

166. MaTY, BoivinMA, YeD, et al.Mechanism of TNF‐alpha modulation of Caco‐2 intestinal epithelial tight junction barrier: role of myosin light‐chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol2005;288:G422.

167. BuschmannMM, ShenL, RajapakseH, et al.Occludin OCEL domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell2013;24:3056. CrossRef

168. Al‐SadiR, KhatibK, GuoS, et al.Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol2011;300:G1054. CrossRef

169. SchulzkeJD, GitterAH, MankertzJ, et al.Epithelial transport and barrier function in occludin‐deficient mice. Biochim Biophys Acta2005;1669:34. CrossRef

170. SaitouM, FuruseM, SasakiH, et al.Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell2000;11:4131. CrossRef

171. AndersonJM, Van ItallieCM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol2009;1:a002584. CrossRef

172. Al‐SadiR, YeD, DokladnyK, et al.Mechanism of IL‐1beta‐induced increase in intestinal epithelial tight junction permeability. J Immunol2008;180:5653. CrossRef

173. SchwarzBT, WangF, ShenL, et al.LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology2007;132:2383. CrossRef

174. SuzukiT, YoshinagaN, TanabeS. Interleukin‐6 (IL‐6) regulates claudin‐2 expression and tight junction permeability in intestinal epithelium. J Biol Chem2011;286:31263. CrossRef

175. KinugasaT, SakaguchiT, GuX, et al.Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology2000;118:1001. CrossRef

176. BlairSA, KaneSV, ClayburghDR, et al.Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest2006;86:191. CrossRef

177. ShenL, WeberCR, RaleighDR, et al.Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol2011;73:283. CrossRef

178. SuL, ShenL, ClayburghDR, et al.Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology2009;136:551. CrossRef

179. BoirivantM, AmendolaA, ButeraA, et al.A transient breach in the epithelial barrier leads to regulatory T‐cell generation and resistance to experimental colitis. Gastroenterology2008;135:1612. CrossRef

180. GradelKO, NielsenHL, SchonheyderHC, et al.Increased short‐ and long‐term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology2009;137:495. CrossRef

181. PorterCK, GormleyR, TribbleDR, et al.The Incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy US adult population. Am J Gastroenterol2011;106:130. CrossRef

182. VillaniAC, LemireM, ThabaneM, et al.Genetic risk factors for post‐infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology2010;138:1502. CrossRef

183. DunlopSP, HebdenJ, CampbellE, et al.Abnormal intestinal permeability in subgroups of diarrhea‐predominant irritable bowel syndromes. Am J Gastroenterol2006;101:1288. CrossRef

184. HeWQ, PengYJ, ZhangWC, et al.Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology2008;135:610. CrossRef

185. HeWQ, QiaoYN, ZhangCH, et al.Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt‐induced hypertension. Am J Physiol Heart Circ Physiol2011;301:H584. CrossRef

186. SuL, NalleSC, ShenL, et al.TNFR2 activates MLCK‐dependent tight junction dysregulation to cause apoptosis‐mediated barrier loss and experimental colitis. Gastroenterology2013;145:407. CrossRef

187. WainwrightMS, RossiJ, SchavockyJ, et al.Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci U S A2003;100:6233. CrossRef

188. MayGR, SutherlandLM, MeddingsJB. Lactulose/mannitol permeability is increased in relatives of patients with Crohn's disease. Gastroenterology1992;102:A934.

189. VetranoS, RescignoM, Rosaria CeraM, et al.Unique role of junctional adhesion molecule‐a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology2008;135:173. CrossRef

190. KhounlothamM, KimW, PeatmanE, et al.Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity2012;37:563. CrossRef

191. LaukoetterMG, NavaP, LeeWY, et al.JAM‐A regulates permeability and inflammation in the intestine in vivo. J Exp Med2007;204:3067. CrossRef

192. MadsenKL, MalfairD, GrayD, et al.Interleukin‐10 gene‐deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis1999;5:262. CrossRef

193. MadsenKL, DoyleJS, TaverniniMM, et al.Antibiotic therapy attenuates colitis in interleukin 10 gene‐deficient mice. Gastroenterology2000;118:1094. CrossRef

194. ArrietaMC, MadsenK, DoyleJ, et al.Reducing small intestinal permeability attenuates colitis in the IL10 gene‐deficient mouse. Gut2009;58:41. CrossRef

195. FrankeA, BalschunT, KarlsenTH, et al.Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet2008;40:1319. CrossRef

196. GlockerEO, KotlarzD, BoztugK, et al.Inflammatory bowel disease and mutations affecting the interleukin‐10 receptor. N Engl J Med2009;361:2033. CrossRef