Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Motility of the small intestine and colon

1. BharuchaAE, BrookesSJ. Neurophysiologic mechanisms of human large intestinal motility. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 5th ed. London: Elsevier; 2012: 977. CrossRef

2. LangeW, JohnsonLR, GhishanFK, et al.Cecum of guinea pig is a reservoir and sigmoid is a high‐resistance conduit. Dig Dis Sci1995;40:1015. CrossRef

3. BrownBP, SchrierJE, BerbaumKS, et al.Haustral septations increase axial and radial distribution of luminal contents in glass models of the colon. Am J Physiol1995;269(5 Pt 1):G706.

4. Schulze‐DelrieuK, BrownBP, LangeW, et al.Volume shifts, unfolding and rolling of haustra in the isolated guinea pig caecum. Neurogastroenterol Motil1996;8:217. CrossRef

5. RaoSS, CamilleriM, HaslerWL, et al.Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol Motil[Review]. 2011;23:8. CrossRef

6. DeiterenA, CamilleriM, BharuchaAE, et al.Performance characteristics of scintigraphic colon transit measurement in health and irritable bowel syndrome and relationship to bowel functions. Neurogastroenterol Motil2010;22:415, e95. CrossRef

7. ImamH, SanmiguelC, LariveB, et al.Study of intestinal flow by combined videofluoroscopy, manometry, and multiple intraluminal impedance. Am J Physiol Gastrointest Liver Physiol2004;286:G263. CrossRef

8. MalageladaJR, RobertsonJS, BrownML, et al.Intestinal transit of solid and liquid components of a meal in health. Gastroenterology1984;87:1255.

9. SpillerRC, BrownML, PhillipsSF. Emptying of the terminal ileum in intact humans. Influence of meal residue and ileal motility. Gastroenterology1987;92:724.

10. DegenLP, PhillipsSF. How well does stool form reflect colonic transit?Gut1996;39:109. CrossRef

11. VassalloM, CamilleriM, PhillipsSF, et al.Transit through the proximal colon influences stool weight in the irritable bowel syndrome. Gastroenterology1992;102:108.

12. DegenLP, PhillipsSF. Variability of gastrointestinal transit in healthy women and men. Gut1996;39:299. CrossRef

13. ProanoM, CamilleriM, PhillipsSF, et al.The unprepared human colon does not discriminate between solids and liquids. Am J Physiol1991;260(G13):G16.

14. GonlachanvitS, ColeskiR, OwyangC, et al.Inhibitory actions of a high fiber diet on intestinal gas transit in healthy humans. Gut2004;53:1577. CrossRef

15. GonlachanvitS, ColeskiR, OwyangC, et al.Nutrient modulation of intestinal gas dynamics in healthy humans: dependence on caloric content and meal consistency. Am J Physiol Gastrointest Liver Physiol2006;291:G389. CrossRef

16. Hernando‐HarderAC, SerraJ, AzpirozF, et al.Sites of symptomatic gas retention during intestinal lipid perfusion in healthy subjects. Gut2004;53:661. CrossRef

17. DianeseR, SerraJ, AzpirozF, et al.Influence of body posture on intestinal transit of gas. Gut2003;52:971. CrossRef

18. DianeseR, SerraJ, AzpirozF, et al.Effects of physical activity on intestinal gas transit and evacuation in healthy subjects. Am J Med2004;116:536. CrossRef

19. XiongZ, SperelakisN, NoffsingerA, et al.Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch1993;423:485. CrossRef

20. RaeMG, FlemingN, McGregorDB, et al.Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol1998;510(Pt 1):309. CrossRef

21. RichA, KenyonJL, HumeJR, et al.Dihydropyridine‐sensitive calcium channels expressed in canine colonic smooth muscle cells. Am J Physiol1993;264(3 Pt 1):C745.

22. XiongZ, SperelakisN, NoffsingerA, et al.Ca2+ currents in human colonic smooth muscle cells. Am J Physiol1995;269(3 Pt 1):G378.

23. SandersKM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil2008;20(Suppl 1):39. CrossRef

24. PooleDP, FurnessJB. Enteric nervous system structure and neurochemistry related to function and neuropathology. Chapter 19. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract, 5th ed. London: Elsevier; 2012: 557. CrossRef

25. MaedaH, YamagataA, NishikawaS, et al.Requirement of c‐kit for development of intestinal pacemaker system. Development1992;116:369.

26. HuizingaJD, ThunebergL, KlüppelM, et al.W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature1995;373:347. CrossRef

27. WardSM, BurnsAJ, TorihashiS, et al.Mutation of the proto‐oncogene c‐kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol1994;480(Pt 1):91. CrossRef

28. SandersKM, KohSD, WardSM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol2006;68:307. CrossRef

29. FarrugiaG, SzurszewskiJH. Heme oxygenase, carbon monoxide, and interstitial cells of Cajal. Microsc Res Tech1999;47:321. CrossRef

30. GibbonsSJ, FarrugiaG. The role of carbon monoxide in the gastrointestinal tract. J Physiol2004;556(Pt 2):325. CrossRef

31. KraichelyRE, FarrugiaG. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil2007;19:245. CrossRef

32. GoyalRK, ChaudhuryA. Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut. Am J Physiol Gastrointest Liver Physiol2010;298:G10. CrossRef

33. SandersKM, HwangSJ, WardSM. Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol2010;588(Pt 23):4621. CrossRef

34. KimTW, KohSD, OrdögT, et al.Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol2003;546(Pt 2):415. CrossRef

35. ZhuY, HuizingaJD. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel. J Cell Mol Med2008;12(5A):1718. CrossRef

36. HuizingaJD, GoldenCM, ZhuY, et al.Ion channels in interstitial cells of Cajal as targets for neurotransmitter action. Neurogastroenterol Motil2004;16(Suppl 1):106. CrossRef

37. RaeMG, FlemingN, McGregorDB, et al.Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol Lond1998;510:309. CrossRef

38. FarrugiaG. Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu Rev Physiol1999;61:45. CrossRef

39. ZhuMH, KimTW, RoS, et al.A Ca(2+)‐activated Cl(‐) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol2009;587(Pt 20):4905. CrossRef

40. BeckettEA, HoriguchiK, KhoyiM, et al.Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol2002;543(Pt 3):871. CrossRef

41. BurnsAJ, LomazAE, TorihashiS, et al.Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA1996;93:12008. CrossRef

42. WardSM, McLarenGJ, SandersKM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol2006;573(Pt 1):147. CrossRef

43. BerezinI, HuizingaJD, DanielEE. Structural characterization of interstitial cells of Cajal in myenteric plexus and muscle layers of canine colon. Can J Physiol Pharmacol1990;68:1419. CrossRef

44. BerezinI, HuizingaJD, FarrawayL, et al.Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can J Physiol Pharmacol1990;68:922. CrossRef

45. HuizingaJD, BerezinI, DanielEE, et al.Inhibitory innervation of colonic smooth muscle cells and interstitial cells of Cajal. Can J Physiol Pharmacol1990;68:447. CrossRef

46. KurahashiM, ZhengH, DwyerL, et al.A functional role for the ‘fibroblast‐like cells’ in gastrointestinal smooth muscles. J Physiol2011;589(Pt 3):697. CrossRef

47. CobineCA, HennigGW, KurahashiM, et al.Relationship between interstitial cells of Cajal, fibroblast‐like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res2011;344:17. CrossRef

48. HeCL, BurgartL, WangL, et al.Decreased interstitial cell of cajal volume in patients with slow‐transit constipation. Gastroenterology2000;118:14. CrossRef

49. FarrugiaG. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil2008;20(Suppl 1):54. CrossRef

50. GarrityMM, GibbonsSJ, SmyrkTC, et al.Diagnostic challenges of motility disorders: optimal detection of CD117+ interstitial cells of Cajal. Histopathology2009;54:286. CrossRef

51. Gomez‐PinillaPJ, GibbonsSJ, BardsleyMR, et al.Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol2009;296:G1370. CrossRef

52. AndersenIS, BuntzenS, RijkhoffNJ, et al.Ano‐rectal motility responses to pelvic, hypogastric and pudendal nerve stimulation in the Gottingen minipig. Neurogastroenterol Motil2006;18:153. CrossRef

53. TurnbullGK, HamdyS, AzizQ, et al.The cortical topography of human anorectal musculature. Gastroenterology1999;117:32. CrossRef

54. SmithTK, BornsteinJC, FurnessJB. Distension‐evoked ascending and descending reflexes in the circular muscle of the guinea‐pig ileum. J Auton Nerv Syst1990;29:203. CrossRef

55. MillerSM, SzurszewskiJH. Relationship between colonic motility and cholinergic mechanosensory afferent synaptic input to mouse superior mesenteric ganglion. Neurogastroenterol Motil2002;14:339. CrossRef

56. CucheG, BlatS, MalbertCH. Desensitization of ileal vagal receptors by short‐chain fatty acids in pigs. Am J Physiol Gastrointest Liver Physiol2001;280:G1013.

57. DiamantNE, BortoffA. Nature of the intestinal slow‐wave frequency gradient. Am J Physiol1969;216:301.

58. CostaM, FurnessJB. The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn Schmiedebergs Arch Pharmacol1976;294:47. CrossRef

59. BaylissWM, StarlingEH. The movements and innervation of the small intestine. J Physiol Lond1899;24:99. CrossRef

60. BaylissWM, StarlingEH. The movements and the innervation of the large intestine. J Physiol Lond1900;26:107. CrossRef

61. DicksonEJ, HennigGW, HerediaDJ, et al.Polarized intrinsic neural reflexes in response to colonic elongation. J Physiol2008;586(Pt 17):4225. CrossRef

62. DicksonEJ, SpencerNJ, HennigGW, et al.An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology2007;132:1912. CrossRef

63. KeatingDJ, SpencerNJ. Release of 5‐hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology2010;138:659. CrossRef

64. GriderJR. Tachykinins as transmitters of ascending contractile component of the peristaltic reflex. Am J Physiol1989;257:G709.

65. IzzoAA, MascoloN, Di CarloG, et al.Ascending neural pathways in the isolated guinea‐pig ileum: effect of muscarinic M1, M2 and M3 cholinergic antagonists. Neuroscience1999;91:1575. CrossRef

66. ToniniM, SpeltaV, De PontiF, et al.Tachykinin‐dependent and ‐independent components of peristalsis in the guinea pig isolated distal colon. Gastroenterology2001;120:938. CrossRef

67. NieuwmeyerF, YeH, HuizingaJD. Ava [L‐Pro9, N‐MeLeu10] substance P [7‐11] (GR 73632) and Sar9, Met(O2)11 increase distention‐induced peristalsis through activation of neurokinin‐1 receptors on smooth muscle and interstitial cells of Cajal. J Pharmacol Exp Ther2006;317:439. CrossRef

68. GriderJR. Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am J Physiol1993;264:G334.

69. CostallB, NaylorRJ, TuladharBR. 5‐HT4 receptor mediated facilitation of the emptying phase of the peristaltic reflex in the guinea‐pig isolated ileum. Br J Pharmacol1993;110:1572. CrossRef

70. PooleDP, XuB, KohSL, et al.Identification of neurons that express 5‐hydroxytryptamine4 receptors in intestine. Cell Tissue Res2006;325:413. CrossRef

71. GriderJR, KuemmerleJF, JinJG. 5‐HT released by mucosal stimuli initiates peristalsis by activating 5‐HT4/5‐HT1P receptors on sensory CGRP neurons. Am J Physiol1996;270:G778.

72. KagakuraY, KisoT, MiyataK, et al.The effect of the selective 5‐HT3 receptor agonist on ferret gut motility. Life Sci2002;71:1313. CrossRef

73. KadowakiM, WangXO, ShimataniH, et al.5‐HT4 receptor enhances the propulsive power of the peristaltic reflex in the rat distal colon. Auton Neurosci2002;99:62. CrossRef

74. De SchryverAM, AndriesseGI, SamsomM, et al.The effects of the specific 5‐HT4 agonist, prucalopride, on colonic motility in healthy volunteers. Aliment Pharmacol Ther2002;16:603. CrossRef

75. BjornssonE, CheyWD, LadabaumU, et al.Differential 5‐HT3 mediation of human gastrocolonic response and colonic peristaltic reflex. Am J Physiol1998;275:G498.

76. JinJG, Foxx‐OrensteinAE, GriderJR. Propulsion in guinea pig colon induced by 5‐hydroxytryptamine (HT) via 5‐HT4 and 5‐HT3 receptors. J Pharmacol Exp Ther1999;288:93.

77. TuladharBR, CostallB, NaylorRJ. 5‐HT3 and 5‐HT4 receptor‐mediated facilitation of the emptying phase of the peristaltic reflex in the marmoset isolated ileum. Br J Pharmacol1996;117:1679. CrossRef

78. GriderJR, Foxx‐OrensteinAE, JinJG. 5‐Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology1998;115:370. CrossRef

79. GriderJR. Desensitization of the peristaltic reflex induced by mucosal stimulation with the selective 5‐HT4 agonist tegaserod. Am J Physiol Gastrointest Liver Physiol2006;290:G319. CrossRef

80. ToniniM, ViciniR, CervioE, et al.5‐HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology2005;129:1557. CrossRef

81. TuladharBR, GeL, NaylorRL. 5‐HT7 receptors mediate the inhibitory effect of 5‐HT on peristalsis in the isolated guinea‐pig ileum. Br J Pharmacol2003;138:1210. CrossRef

82. GriderJR, PilandBE, GulickMA, et al.Brain‐derived neurotrophic factor augments peristalsis by augmenting 5‐HT and calcitonin gene‐related peptide release. Gastroenterology2006;130:771. CrossRef

83. AbduF, HicksGA, HennigG, et al.Somatostatin sst2 receptors inhibit peristalsis in the rat and mouse jejunum. Am J Physiol Gastrointest Liver Physiol2002;282:G624. CrossRef

84. GriderJR. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther2003;307:460. CrossRef

85. HerbertMK, Roth‐GoldbrunnerS, HolzerP, et al.Clonidine and dexmedetomidine potently inhibit peristalsis in the guinea pig ileum in vitro. Anesthesiology2002;97:1491. CrossRef

86. HeinemannA, ShahbazianA, BarthoL, et al.Different receptors mediating the inhibitory action of exogenous ATP and endogenously released purines on guinea‐pig intestinal peristalsis. Br J Pharmacol1999;128:313. CrossRef

87. StorrM, ThammerJ, DunkelR, et al.Modulatory effect of adenosine receptors on the ascending and descending neural reflex responses of rat ileum. BMC Neurosci2002;3:21. CrossRef

88. GriderJR, LangdonLE. Physiologic role of neuropeptide Y in the regulation of the ascending phase of the peristaltic reflex. Am J Physiol Gastrointest Liver Physiol2003;285:G1139. CrossRef

89. GriderJR. Gastrin‐releasing peptide is a modulatory neurotransmitter of the descending phase of the peristaltic reflex. Am J Physiol Gastrointest Liver Physiol2004;287:G1109. CrossRef

90. PintoL, IzzoAA, CascioMG, et al.Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology2002;123:227. CrossRef

91. MancinelliR, FabriziA, Del MonacoS, et al.Inhibition of peristaltic activity by cannabinoids in the isolated distal colon of mouse. Life Sci2001;69:101. CrossRef

92. StorrM, SattlerD, HahnA, et al.Endogenous CCK depresses contractile activity within the ascending myenteric reflex pathways of rat ileum. Neuropharmacology2003;44:524. CrossRef

93. SatohY, OkishioY, AzumaYT, et al.Orexin A affects ascending contraction depending on downstream cholinergic neurons and descending relaxation through independent pathways in mouse jejunum. Neuropharmacology2006;51:466. CrossRef

94. ShahbazianA, HolzerP. Regulation of guinea pig intestinal peristalsis by endogenous endothelin acting at ETB receptors. Gastroenterology2000;119:80. CrossRef

95. HeinemannA, PieberD, HolzerP. Inhibition by female sex steroids of peristalsis in the guinea pig small intestine. Digestion2002;65:213. CrossRef

96. GriderJR. Interleukin‐1 beta selectively increases substance P release and augments the ascending phase of the peristaltic reflex. Neurogastroenterol Motil2003;15:607. CrossRef

97. ChanSK, RuddJA. Role of bradykinin B2 receptors in the modulation of the peristaltic reflex of the guinea pig isolated ileum. Eur J Pharmacol2006;539:108. CrossRef

98. GriderJR. CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am J Physiol1994;266:G1139.

99. KellowJE, BorodyTJ, PhillipsSF, et al.Human interdigestive motility: variations in patterns from esophagus to colon. Gastroenterology1986;91:386.

100. CastedalM, AbrahamssonH. High‐resolution analysis of the duodenal interdigestive phase III in humans. Neurogastroenterol Motil2001;13:473. CrossRef

101. SzurszewskiJH. A migrating electric complex of the canine small intestine. Am J Physiol1969;217:1757.

102. FichA, CamilleriM, PhillipsSF. Effect of age on human gastric and small bowel motility. J Clin Gastroenterol1989;11:416. CrossRef

103. AytugN, GiralA, ImeryuzN, et al.Gender influence on jejunal migrating motor complex. Am J Physiol Gastrointest Liver Physiol2001;280:G255.

104. KerlinP, ZinsmeisterA, PhillipsS. Relationship of motility to flow of contents in the human small intestine. Gastroenterology1982;82:701.

105. DelooseE, JanssenP, DepoortereI, et al.The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol[Review]. 2012;9:271. CrossRef

106. NilssonI, SvenbergT, HellstromPM, et al.Pancreaticobiliary juice releases motilin during phase I of the migrating motor complex in man. Scand J Gastroenterol1993;28:80. CrossRef

107. KajiyamaY, IrieM, EnjojiA, et al.Role of bile acids in duodenal migrating motor complexes in dogs. Dig Dis Sci1998;43:2278. CrossRef

108. Van OoteghemNA, Van ErpecumKJ, Van Berge‐HenegouwenGP. Effects of ileal bile salts on fasting small intestinal and gallbladder motility. Neurogastroenterol Motil2002;14:527. CrossRef

109. GalliganJJ, FurnessJB, CostaM. Migration of the myoelectric complex after interruption of the myenteric plexus: intestinal transection and regeneration of enteric nerves in the guinea pig. Gastroenterology1989;97:1135.

110. ArnoldJH, AlevizatosCA, CoxSE, et al.Propagation of small bowel migrating motor complex activity fronts varies with anastamosis type. J Surg Res1991;51:506. CrossRef

111. MarikF, CodeCF. Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology1975;69:387.

112. CalvertEL, WhorwellPJ, HoughtonLA. Inter‐digestive and post‐prandial antro‐pyloro‐duodenal motor activity in humans: effect of 5‐hydroxytryptamine 1 receptor agonism. Aliment Pharmacol Ther2004;19:805. CrossRef

113. MatsumotoT, SarnaSK, CondonRE, et al.Differential sensitivities of morphine and motilin to initiate migrating motor complex in isolated intestinal segments. Regeneration of intrinsic nerves. Gastroenterology1986;90:61.

114. HolleGE, SteinbachE. Different endogenous opioid effects on delta‐ and mu‐receptor subtypes in antral and duodenal motility of conscious dogs. Dig Dis Sci2002;47:1027. CrossRef

115. BozkurtA, NaslundE, HolstJJ, et al.GLP‐1 and GLP‐2 act in concert to inhibit fasted, but not fed, small bowel motility in the rat. Regul Pept2002;107:129. CrossRef

116. QuigleyEM, ThompsonJS. The motor response to intestinal resection: motor activity in the canine small intestine following distal resection. Gastroenterology1993;105:791.

117. HeitzPU, KasperM, KreyG, et al.Immunoelectron cytochemical localization of motilin in human duodenal enterochromaffin cells. Gastroenterology1978;74:713.

118. FeighnerSD, TanCP, McKeeKK, et al.Receptor for motilin identified in the human gastrointestinal system. Science1999;284:2184. CrossRef

119. LeeKY, HyoungJP, ChangTM, et al.Cholinergic role on release and action of motilin. Peptides1983;4:375. CrossRef

120. ItohZ, TakeuchiS, AizawaI, et al.Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Am J Dig Dis1978;23:929. CrossRef

121. ItohZ, HondaR, HiwatashiK, et al.Motilin‐induced mechanical activity in the canine alimentary tract. Scand J Gastroenterol1976;11(Suppl 39):93.

122. LeeKY, ChangT‐M, CheyWY. Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am J Physiol1983;245:G547.

123. PoitrasP, SteinbachJH, VanDeventerG, et al.Motilin‐independent ectopic fronts of the interdigestive myoelectric complex in dogs. Am J Physiol1980;239:G215.

124. MalfertheinerP, SarrMG, SpencerMP, et al.Effect of duodenectomy on interdigestive pancreatic secretion, gastrointestinal motility, and hormones in dogs. Am J Physiol1989;257:G415.

125. AizawaI, ItohZ, HarrisV, et al.Plasma somatostatin‐like immunoreactivity during the interdigestive period in the dog. J Clin Invest1981;68:206. CrossRef

126. MochikiE, InuiA, SatohM, et al.Motilin is a biosignal controlling cyclic release of pancreatic polypeptide via the vagus in fasted dogs. Am J Physiol1997;272:G224.

127. ZimmermanDW, SarrMG, SmithCD, et al.Cyclic interdigestive pancreatic exocrine secretion: is it mediated by neural or hormonal mechanisms?Gastroenterology1992;102:1378.

128. FeurleGE, PfeifferA, SchmidtT, et al.Phase III of the migrating motor complex: associated with endogenous xenin plasma peaks and induced by exogenous xenin. Neurogastroenterol Motil2001;13:237. CrossRef

129. McCoyEJ, BakerRD. Effect of feeding on electrical activity of dog's small intestine. Am J Physiol1968;214:1291.

130. CastedalM, BjornssonE, AbrahamssonH. Postprandial peristalsis in the human duodenum. Neurogastroenterol Motil1998;10:227. CrossRef

131. Schulze‐DelrieuK. The load‐to‐length principle in the inhibition of gastric emptying by intestinal feedback. Gastroenterology1990;98:1387.

132. CoffinB, LemannM, FlourieB, et al.Local regulation of ileal tone in healthy humans. Am J Physiol1997;272:G147.

133. SofferEE, AdrianTE. Effect of meal composition and sham feeding on duodenojejunal motility in humans. Dig Dis Sci1992;37:1009. CrossRef

134. VerkijkM, VechtJ, GielkensHA, et al.Effects of medium‐chain and long‐chain triglycerides on antroduodenal motility and small bowel transit time in man. Dig Dis Sci1997;42:1933. CrossRef

135. De WeverI, EeckhoutC, VantrappenG, et al.Disruptive effect of test meals on interdigestive motor complex in dogs. Am J Physiol1978;235:E661.

136. SchonfeldJ, EvansDF, WingateDL. Effect of viscous fiber (guar) on postprandial motor activity in human small bowel. Dig Dis Sci1997;42:1613. CrossRef

137. GielkensHA, Van den BiggelaarA, VechtJ, et al.Effect of intravenous amino acids on interdigestive antroduodenal motility and small bowel transit time. Gut1999;44:240. CrossRef

138. PouderouxP, VeyracM, MichelH. Sham feeding disrupts phase III of the duodenal migrating motor complex in humans. Neurogastroenterol Motil1995;7:139. CrossRef

139. ChungSA, DiamantNE. Small intestinal motility in fasted and postprandial states: effect of transient vagosympathetic blockade. Am J Physiol1987;252:G301.

140. SchangJC, AngelF, LambertA, et al.Inhibition of canine duodenal interdigestive myoelectric complex by nutrient perfusion of jejunal and ileal Thiry‐Vella loops. Gut1981;22:738. CrossRef

141. JohnsonCP, SarnaSK, CowlesVE, et al.Effects of transection and reanastomosis on postprandial jejunal transit and contractile activity. Surgery1995;117:531. CrossRef

142. QianLW, PetersLJ, ChenJD. Postprandial response of jejunal slow waves and mediation via cholinergic mechanism. Dig Dis Sci1999;44:1506. CrossRef

143. FraserR, VozzoR, DiMatteoAC, et al.Endogenous nitric oxide modulates small intestinal nutrient transit and activity in healthy adult humans. Scand J Gastroenterol2005;40:1290. CrossRef

144. WingateDL, PearceEA, HuttonM, et al.Quantitative comparison of the effects of cholecystokinin, secretin, and pentagastrin on gastrointestinal myoelectric activity in the conscious dog. Gut1978;19:593. CrossRef

145. NiederauC, KarausM. Effects of CCK receptor blockade on intestinal motor activity in conscious dogs. Am J Physiol1991;260:G315.

146. Al‐SaffarA, RosellS. Effects of neurotensin and neurotensin analogues on the migrating myoelectrical complexes in the small intestine of rats. Acta Physiol Scand1981;112:203. CrossRef

147. PellissierS, EribonO, ChabertJ, et al.Peripheral neurotensin participates in the modulation of pre‐ and postprandial intestinal motility in rats. Neuropeptides1996;30:412. CrossRef

148. CamilleriM, MalageladaJR. Abnormal intestinal motility in diabetics with gastroparesis. Eur J Clin Invest1984;14:427. CrossRef

149. FichA, NeriM, CamilleriM, et al.Stasis syndromes following gastric surgery: clinical and motility features of sixty symptomatic patients. J Clin Gastroenterol1990;12:512. CrossRef

150. KruisW, AzpirozF, PhillipsSF. Contractile patterns and transit of fluid in canine terminal ileum. Am J Physiol1985;249:G264.

151. SarnaSK. Giant migrating contractions and their myoelectric correlates in the small intestine. Am J Physiol1987;253:G697.

152. DinningPG, BamptonPA, KennedyML, et al.Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol1999;277:G983.

153. CucheG, MalbertCH. Relationships betwen cecoileal reflux and ileal motor patterns in conscious pigs. Am J Physiol1998;274:G35.

154. OttersonMF, SarnaSK. Neural control of small intestinal giant migrating contractions. Am J Physiol1994;266:G576.

155. SummersRW, AnurasS, GreenJ. Jejunal manometry patterns in health, partial intestinal obstruction, and pseudoobstruction. Gastroenterology1983;85:1290.

156. SarnaSK, OttersonMF. Small intestinal amyogenesia and dysmyogenesia induced by morphine and loperamide. Am J Physiol1990;258:G282.

157. LangIM, SarnaSK, CondonRE. Gastrointestinal motor correlates of vomiting in the dog: quantification and characterization as an independent phenomenon. Gastroenterology1986;90:40.

158. LangIM, MarvigJ, SarnaSK, et al.Gastrointestinal myoelectric correlates of vomiting in the dog. Am J Physiol1986;251:G830.

159. SarnaSK. Neuronal locus and cellular signaling for stimulation of ileal giant migrating and phasic contractions. Am J Physiol Gastrointest Liver Physiol2003;284:G789. CrossRef

160. ShaS, MatsushimaY, HabuS, et al.Extrinsic nervous control of retrograde giant contraction during vomiting in conscious dogs. Dig Dis Sci1996;41:1546. CrossRef

161. ArkwrightJW, UnderhillID, MaunderSA, et al.Design of a high‐sensor count fibre optic manometry catheter for in‐vivo colonic diagnostics. Opt Express2009;17:22423. CrossRef

162. NarducciF, BassottiG, GaburriM, et al.Twenty four hour manometric recording of colonic motor activity in healthy man. Gut1987;28:17. CrossRef

163. BamptonPA, DinningPG, KennedyML, et al.Prolonged multi‐point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol2001;96:1838. CrossRef

164. ScottSM. Manometric techniques for the evaluation of colonic motor activity: current status. Neurogastroenterol Motil2003;15:483. CrossRef

165. BamptonPA, DinningPG, KennedyML, et al.Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. Am J Gastroenterol2000;95:1027. CrossRef

166. CrowellMD, BassottiG, CheskinLJ, et al.Method for prolonged ambulatory monitoring of high‐amplitude propagated contractions from colon. Am J Physiol1991;261(2 Pt 1):G263.

167. RaoSS, SadeghiP, BeatyJ, et al.Ambulatory 24‐h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol2001;280:629.

168. DinningPG, SzczesniakMM, CookIJ. Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol Motil2008;20:512. CrossRef

169. DinningPG, SzczesniakMM, CookIJ. Twenty‐four hour spatiotemporal mapping of colonic propagating sequences provides pathophysiological insight into constipation. Neurogastroenterol Motil2008;20:1017. CrossRef

170. DinningPG, SzczesniakMM, CookIJ. Spatio‐temporal analysis reveals aberrant linkage among sequential propagating pressure wave sequences in patients with symptomatically defined obstructed defecation. Neurogastroenterol Motil2009;21:945. CrossRef

171. BharuchaAE. High amplitude propagated contractions. Neurogastroenterol Motil2012;24:977. CrossRef

172. ChoiMG, CamilleriM, O'BrienMD, et al.A pilot study of motility and tone of the left colon in patients with diarrhea due to functional disorders and dysautonomia. Am J Gastroenterol1997;92:297.

173. HaggerR, KumarD, BensonM, et al.Periodic colonic motor activity identified by 24‐h pancolonic ambulatory manometry in humans. Neurogastroenterol Motil2002;14:271. CrossRef

174. DinningPG, WiklendtL, MaslenL, et al.Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high‐resolution fiber‐optic manometry. Neurogastroenterol Motil2014;26:1443. CrossRef

175. FordMJ, CamilleriM, WisteJA, et al.Differences in colonic tone and phasic response to a meal in the transverse and sigmoid human colon. Gut1995;37:264. CrossRef

176. SteedKP, BohemenEK, LamontGM, et al.Proximal colonic response and gastrointestinal transit after high and low fat meals. Dig Dis Sci1993;38:1793. CrossRef

177. BamptonPA, DinningPG, KennedyML, et al.Prolonged multipoint recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol2001;96:1838. CrossRef

178. SnapeWJJr, WrightSH, BattleWM, et al.The gastrocolic response: evidence for a neural mechanism. Gastroenterology1979;77:1235.

179. ShibataC, SasakiI, MatsunoS, et al.Colonic motility in innervated and extrinsically denervated loops in dogs. Gastroenterology1991;101:1571.

180. DapoignyM, CowlesVE, ZhuYR, et al.Vagal influence on colonic motor activity in conscious nonhuman primates. Am J Physiol1992;262(2 Pt 1):G231.

181. CoffinB, FossatiS, FlouriéB, et al.Regional effects of cholecystokinin octapeptide on colonic phasic and tonic motility in healthy humans. Am J Physiol1999;276(3 Pt 1):G767.

182. NiederauC, FaberS, KarausM. Cholecystokinin's role in regulation of colonic motility in health and in irritable bowel syndrome. Gastroenterology1992;102:1889.

183. von der OheMR, CamilleriM, KvolsLK. A 5HT3 antagonist corrects the postprandial colonic hypertonic response in carcinoid diarrhea. Gastroenterology1994;106:1184.

184. SteadmanCJ, PhillipsSF, CamilleriM, et al.Control of muscle tone in the human colon. Gut1992;33:541. CrossRef

185. BjornssonES, et al.Differential 5‐HT3 mediation of human gastrocolonic response and colonic peristaltic reflex. Am J Physiol1998;275(3 Pt 1):G498.

186. RaoSS, WelcherK. Periodic rectal motor activity: the intrinsic colonic gatekeeper?Am J Gastroenterol1996;91:890.

187. HaggerR, KumarD, BensonM, et al.Periodic colonic motor activity identified by 24‐h pancolonic ambulatory manometry in humans. Neurogastroenterol Motil2002;14:271. CrossRef

188. QuigleyEM, BorodyTJ, PhillipsSF, et al.Motility of the terminal ileum and ileocecal sphincter in healthy humans. Gastroenterology1984;87:857.

189. DinningPG, BamptonPA, KennedyML, et al.Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol1999;276(2 Pt 1):G331.

190. DinningPG, SzczesniakMM, CookIJ. Determinants of postprandial flow across the human ileocaecal junction: a combined manometric and scintigraphic study. Neurogastroenterol Motil2008;20:1119. CrossRef

191. DinningPG, BamptonPA, KennedyML, et al.Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol1999;277(5 Pt 1):G983.

192. ProanoM, CamilleriM, PhillipsSF, et al.Unprepared human colon does not discriminate between solids and liquids. Am J Physiol1991;260(1 Pt 1):G13.

193. FichA, SteadmanCJ, PhillipsSF, et al.Ileocolonic transit does not change after right hemicolectomy. Gastroenterology1992;103:794.

194. BharuchaAE. Pelvic floor anatomy and function. Neurogastroenterol Motil2006;18:507. (Review). CrossRef

195. PercyJP, NeillME, SwashM, et al.Electrophysiological study of motor nerve supply of pelvic floor. Lancet1981;1:16. CrossRef

196. DyckPJ, ThomasPK(eds). Autonomic and somatic systems to the anorectum and pelvic floor. In: Peripheral Neuropathy, Vol. 37, 4th ed. Philadelphia, PA: Elsevier Saunders; 2005: 279.

197. HoffmanS, OrestanoF. Histology of the myenteric plexus in relation to rectal biopsy in congenital megacolon. J Pediatr Surg1967;2:575. CrossRef

198. WeinbergAG. The anorectal myenteric plexus: itsrelation to hypoganglionosis of the colon. Am J Clin Pathol1970;54:637.

199. CobineCA, HennigGW, BayguinovYR, et al.Interstitial cells of Cajal in the cynomolgus monkey rectoanal region and their relationship to sympathetic and nitrergic nerves. Am J Physiol Gastrointest Liver Physiol2010;298:G643. CrossRef

200. RouillonJM, AzpirozF, MalageladaJR. Sensorial and intestinointestinal reflex pathways in the human jejunum. Gastroenterology1991;101:1606.

201. AboM, KonoT, WangZS, et al.Intestinointestinal inhibitory reflexes – effect of distension on intestinal slow waves. Dig Dis Sci2001;46:1177. CrossRef

202. Da Cunha MeloJ, SummersRW, ThompsonHH, et al.Effects of intestinal secretagogues and distension on small bowel myoelectric activity in fasted and fed conscious dogs. J Physiol1981;321:483. CrossRef

203. SpillerRC, TrotmanIF, HigginsBE, et al.The ileal brake–inhibition of jejunal motility after ileal fat perfusion in man. Gut1984;25:365. CrossRef

204. LinHC, KimBH, ElashoffJD, et al.Gastric emptying of solid food is most potently inhibited by carbohydrate in the canine distal ileum. Gastroenterology1992;102:793.

205. CucheG, MalbertCH. Ileal short‐chain fatty acids inhibit transpyloric flow in pigs. Scand J Gastroenterol1999;34:149.

206. LinHC, DotyJE, ReedyTJ, et al.Inhibition of gastric emptying by sodium oleate depends on the length of intestine exposed to nutrient. Am J Physiol1990;259:G1031.

207. FeinleC, O'DonovanD, DoranS, et al.Effects of fat digestion on appetite, APD motility, and gut hormones in response to duodenal fat infusion in humans. Am J Physiol Gastrointest Liver Physiol2003;284:G798. CrossRef

208. SchwartzGJ, MoranTH. Duodenal nutrient exposure elicits nutrient‐specific gut motility and vagal afferent signals in rat. Am J Physiol Gastrointest Liver Physiol1998;274:R1236.

209. OhtaniN, SasakiI, NaitoH, et al.Mediators for fat‐induced ileal brake are different between stomach and proximal small intestine in conscious dogs. J Gastrointest Surg2001;5:377. CrossRef

210. TopcuT, GulpinarMA, IsmanCA, et al.Enterogastric brake in rats with segmental bowel resection: role of capsaicin‐sensitive nerves. Clin Exp Pharmacol Physiol2002;29:68. CrossRef

211. RaybouldHE, HolzerH. Dual capsaicin‐sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by intestinal carbohydrate. Neurosci Lett1992;141:236. CrossRef

212. RaybouldHE, GlatzleJ, RobinC, et al.Expression of 5‐HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol2003;284:G367. CrossRef

213. LinHC, ChenJH. Slowing of intestinal transit by fat depends on an ondansetron‐sensitive, efferent serotonergic pathway. Neurogastroenterol Motil2003;15:317. CrossRef

214. LinHC, ZaidelO, HumS. Intestinal transit of fat depends on accelerating effect of cholecystokinin and slowing effect of an opioid pathway. Dig Dis Sci2002;47:2217. CrossRef

215. WhitedKL, ThaoD, LloydKC, et al.Targeted disruption of the murine CCK1 receptor gene reduces intestinal lipid‐induced feedback inhibition of gastric function. Am J Physiol Gastrointest Liver Physiol2006;291:G156. CrossRef

216. GlatzleJ, DarcelN, RechsAJ, et al.Apolipoprotein A‐IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway. Am J Physiol Gastrointest Liver Physiol2004;287:R354.

217. GlatzleJ, WangY, AdelsonDW, et al.Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor mediated pathway to inhibit gastric motor function in the rat. J Physiol2003;550:657. CrossRef

218. CucheG, CuberJC, MalbertCH. Ileal short‐chain fatty acids inhibit gastric motility by a humoral pathway. Am J Physiol2000;279:G925.

219. FerrierL, SegainJP, BonnetC, et al.Functional mapping of NPY/PYY receptors in rat and human gastro‐intestinal tract. Peptides2002;23:1765. CrossRef

220. WenJ, PhillipsSF, SarrMG, et al.PYY and GLP‐1 contribute to feedback inhibition from the canine ileum and colon. Am J Physiol1995;269:G945.

221. LinHC, ZhaoXT, WangL, et al.Fat‐induced ileal brake in the dog depends on peptide YY. Gastroenterology1996;110:1491. CrossRef

222. LinHC, NeevelC, ChenPS, et al.Slowing of intestinal transit by fat or peptide YY depends on beta‐adrenergic pathway. Am J Physiol Gastrointest Liver Physiol2003;285:G1310. CrossRef

223. LinHC, NeevelC, ChenJH. Slowing intestinal transit by PYY depends on serotonergic and opioid pathways. Am J Physiol Gastrointest Liver Physiol2004;286:G558. CrossRef

224. GiraltM, VergaraP. Glucagonlike peptide‐1 (GLP‐1) participation in ileal brake induced by intraluminal peptones in rat. Dig Dis Sci1999;44:322. CrossRef

225. Teresa MartinM, AzpirozF, MalageladaJR. Melatonin as a modulator of the ileal brake mechanism. Scand J Gastroenterol2005;40:559. CrossRef

226. LinHC, PerdomoOL, ZhaoXT. Intestinal transit in dogs is accelerated by volume distension during fat‐induced jejunal brake. Dig Dis Sci2001;46:19. CrossRef

227. HughesSF, ScottSM, PilotMA, et al.Adrenoceptors and colocolonic inhibitory reflex. Dig Dis Sci1999;44:2462. CrossRef

228. LawNM, BharuchaAE, ZinsmeisterAR. Rectal and colonic distension elicit viscerovisceral reflexes in humans. Am J Physiol Gastrointest Liver Physiol2002;283:G384. CrossRef

229. BamptonPA, DinningPG, KennedyML, et al.The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol2002;282:G443. CrossRef

230. ShafikA, ShafikAA, El SibaiO, et al.Role of the rectosigmoid junction in fecal continence: concept of the primary continent mechanism. Arch Surg2006;141:23. CrossRef

231. FukumotoS, TatewakiM, TamadaT, et al.Short‐chain fatty acids stimulate colonic transit via intraluminal 5‐HT release in rats. Am J Physiol Regul Integr Comp Physiol2003;284:R1269. CrossRef

232. RondeauMP, MeltzerK, MichelKE, et al.Short chain fatty acids stimulate feline colonic smooth muscle contraction. J Feline Med Surg2003;5:167. CrossRef

233. RattanS, ChakderS. Role of nitric oxide as a mediator of internal anal sphincter relaxation. Am J Physiol1992;262:G107.

234. O'RiordainMG, MolloyRG, GillenP, et al.Rectoanal inhibitory reflex following low stapled anterior resection of the rectum. Dis Colon Rectum1992;35:874. CrossRef

235. KonomiH, SimulaME, MeedeniyaAC, et al.Induction of duodenal motility activates the sphincter of Oddi (SO)‐duodenal reflex in the Australian possum in vitro. Auton Autacoid Pharmacol2002;22:109. CrossRef

236. OhtaD, OzekiK, UraK, et al.Effect of celiac and superior mesenteric ganglionectomy in fasted canine colonic motor activity. Surg Today1995;25:717. CrossRef

237. WenJ, Luque‐de LeonE, KostLJ, et al.Duodenal motility in fasting dogs: humoral and neural pathways mediating the colonic brake. Am J Physiol1998;274:G192.

238. ShafikA. Effect of rectal distension on the small intestine with evidence of a recto‐enteric reflex. Hepatogastroenterology2000;47:1030.

239. RopertA, CherbutC, RozeC, et al.Colonic fermentation and proximal gastric tone in humans. Gastroenterology1996;111:289. CrossRef

240. Fu‐ChengX, AniniY, ChariotJ, et al.Peptide YY release after intraduodenal, intraileal, and intracolonic administration of nutrients in rats. Pflugers Arch1995;431:66. CrossRef

241. MazetB, MiolanJP, NielJP, et al.New insights into the organization of a gastroduodenal inhibitory reflex by the coeliac plexus. J Auton Nerv Syst1994;46:135. CrossRef

242. QuinsonN, CatalinD, NielJP, et al.Release of nitric oxide within the coeliac plexus is involved in the organization of a gastroduodenal inhibitory reflex in the rabbit. J Physiol1999;519:223. CrossRef

243. ShafikA, ShafikI, El SibaiO. Effect of vaginal distension on anorectal function: identification of the vagino‐anorectal reflex. Acta Obstet Gynecol Scand2005;84:225. CrossRef

244. ShafikA, El SibaiO, ShafikI, et al.Effect of micturition on the external anal sphincter: identification of the urethra–anal reflex. J Spinal Cord Med2005;28:421.

245. WilsonP, PerdikisG, HinderRA, et al.Prolonged ambulatory antroduodenal manometry in humans. Am J Gastroenterol1994;89:1489.

246. GorardDA, Vesselinova‐JenkinsCK, LibbyGW, et al.Migrating motor complex and sleep in health and irritable bowel syndrome. Dig Dis Sci1995;40:2383. CrossRef

247. SchonfeldJ, EvansDF, WingateDL. Daytime and night time motor activity of the small bowel after solid meals of different caloric value in humans. Gut1997;40:614. CrossRef

248. RoartyTP, SurattPM, HellmannP, et al.Colonic motor activity in women during sleep. Sleep1998;21:285.

249. FurakawaY, CookIJ, PanagopoulosV, et al.Relationship between sleep patterns and human colonic motor patterns. Gastroenterology1994;107:1372. CrossRef

250. CannPA, ReadNW, CammackJ, et al.Psychological stress and the passage of a standard meal through the stomach and small intestine in man. Gut1986;24:236. CrossRef

251. StanghelliniV, MalageladaJR, ZinsmeisterAR, et al.Stress‐induced gastroduodenal motor disturbances in humans: possible humoral mechanisms. Gastroenterology1983;85:83.

252. ThompsonDG, RichelsonE, MalageladaJR. Perturbation of upper gastrointestinal function by cold stress. Gut1983;24:277. CrossRef

253. ThompsonDG, RichelsonE, MalageladaJR. Perturbation of gastric emptying and duodenal motility through the central nervous system. Gastroenterology1982;83:1200.

254. NarducciF, SnapeWJJr, BattleWM, et al.Increased colonic motility during exposure to a stressful situation. Dig Dis Sci1985;30:40. CrossRef

255. WelganP, MeshkinpourH, BeelerM. Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology1988;94(5 Pt 1):1150.

256. WelganP, MeshkinpourH, HoehlerF. The effect of stress on colon motor and electrical activity in irritable bowel syndrome. Psychosom Med1985;47:139. CrossRef

257. AlmyTP, KernF, TulinFK. Alterations in colonic function in man under stress. II. Experimental production of sigmoid spasm in healthy persons. Gastroenterology1949;12:425.

258. ValoriRM, KumarD, WingateDL. Effects of different types of stress and of “prokinetic” drugs on the control of the fasting motor complex in humans. Gastroenterology1986;90:1890.

259. FukudoS, NomuraT, MuranakaM, et al.Brain‐gut response to stress and cholinergic stimulation in irritable bowel syndrome. A preliminary study. J Clin Gastroenterol1993;17:133. CrossRef

260. AccarinoAM, AzpirozF, MalageladaJR. Attention and distraction: effects on gut perception. Gastroenterology1997;113:415. CrossRef

261. DickhausB, MayerEA, FiroozN, et al.Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Am J Gastroenterol2003;98:135. CrossRef

262. FordMJ, CamilleriM, ZinsmeisterAR, et al.Psychosensory modulation of colonic sensation in the human transverse and sigmoid colon. Gastroenterology1995;109:1772. CrossRef

263. MeitivierA, DelvauxM, LouvelD, et al.Influence of stress on sensory thresholds to rectal distension in healthy volunteers. Gastroenterology1996;110:A717. CrossRef

264. Heymann‐MönnikesHI, ArnoldR. Patients with irritable bowel syndrome (IBS) have alterations in the CNS‐modulation of visceral afferent perception. Gut1995;37:A168. CrossRef

265. ErckenbrechtJF. Noise and intestinal motor alterations. In: BuenoL, CollinsSM, JunienJL(eds). Stress and Digestive motility. London: John Libbey Eurotext; 1989: 93.

266. HoughtonLA, PriorA, WhorwellPJ. Effect of acute stress on anorectal physiology in normal healthy volunteers. Eur J Gastroenterol Hepatol1994;6:389.

267. PosserudI, AgerforzP, EkmanR, et al.Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut2004;53:1102. CrossRef

268. WilliamsCL, PetersonJM, VillarRG, et al.Corticotropin‐releasing factor directly mediates colonic responses to stress. Am J Physiol1987;253:G582.

269. MartinezV, WangL, RivierJ, et al.Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol Lond2004;556:221. CrossRef

270. TachéY, MartinezV, WangL, et al.CRF1 receptor signaling pathways are involved in stress related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br J Pharmacol2004;141:1321. CrossRef

271. BisschopsR, Vanden BergheP, SarnelliG, et al.CRF‐induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF‐1 receptors and activation of voltage‐sensitive calcium channels. Am J Physiol Gastrointest Liver Physiol2006;290:G1252. CrossRef

272. HiroiN, WongML, LicinioJ, et al.Expression of corticotropin releasing hormone receptors type I and type II mRNA in suicide victims and controls. Mol Psychiatry2001;6:540. CrossRef

273. LovenbergTW, ChalmersDT, LiuC, et al.CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology1995;136:4139.

274. MiampambaM, MaillotC, MillionM, et al.Peripheral CRF activates myenteric neurons in the proximal colon through CRF(1) receptor in conscious rats. Am J Physiol Gastrointest Liver Physiol2002;282:G857. CrossRef

275. LenzHJ, BurlageM, RaedlerA, et al.Central nervous system effects of corticotropin releasing factor on gastrointestinal transit in the rat. Gastroenterology1988;94:598.

276. StengelA, TachéY. Neuroendocrine control of the gut during stress: corticotropin‐releasing factor signaling pathways in the spotlight. Ann Rev Physiol2009;71:219. CrossRef

277. FukudoS, NomuraT, HongoM. Impact of corticotropin‐releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut1998;42:845. CrossRef

278. SagamiY, ShimadaY, TayamaJ, et al.Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut2004;53:958. CrossRef

279. SweetserS, CamilleriM, Linker NordSJ, et al.Do corticotropin releasing factor‐1 receptors influence colonic transit and bowel function in women with irritable bowel syndrome?Am J Physiol Gastrointest Liver Physiol2009;296:G1299. CrossRef

280. OhtaD, LeeCW, SarnaSK, et al.Central inhibition of nitric oxide synthase modulates upper gastrointestinal motor activity. Am J Physiol1997;272:G417.

281. BonazB, MartinL, BeurriandE, et al.Locus ceruleus modulates migrating myoelectric complex in rats. Am J Physiol1992;262:G1121.

282. MonnikesH, TebbeJ, GroteC, et al.Involvement of CCK in the paraventricular nucleus of the hypothalamus in the CNS regulation of colonic motility. Digestion2000;62:178. CrossRef

283. BuenoL, FerreJP, FioramontiJ, et al.Effects of intracerebroventricular administration of neurotensin, substance P and calcitonin on gastrointestinal motility in normal and vagotomized rats. Regul Pept1983;6:197. CrossRef

284. FerreJP, RuckebuschY, SoldaniG. Central and peripheral motor effects of galanin on the duodenojejunum and colon in fed rats. Pharmacology1992;44:196. CrossRef

285. GreenwoodB, DiMiccoJA. Activation of the hypothalamic dorsomedial nucleus stimulates intestinal motility in rats. Am J Physiol1995;268:G514.

286. GulpinarMA, BozkurtA, CoskunT, et al.Glucagon‐like peptide (GLP‐1) is involved in the central modulation of fecal output in rats. Am J Physiol2000;278:G924.

287. BondE, HeitkemperM. Thyrotropin‐releasing hormone stimulates intestinal transit in young rats. Regul Pept1990;27:263. CrossRef

288. FujinoK, InuiA, AsakawaA, et al.Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol2003;550:227. CrossRef

289. AbysiqueA, OrsoniP, BouvierM. Evidence for supraspinal nervous control of external anal sphincter motility in the cat. Brain Res1998;795:147. CrossRef

290. OliverMR, TanDT, KirkDR, et al.Colonic and jejunal motor disturbances after colonic antigen challenge of sensitized rat. Gastroenterology1997;112:1996. CrossRef

291. YanagidaH, YanaseH, SandersKM, et al.Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks. Gastroenterology2004;127:1748. CrossRef

292. OverhausM, TogelS, PezzoneMA, et al.Mechanisms of polymicrobial sepsis‐induced ileus. Am J Physiol Gastrointest Liver Physiol2004;287:G685. CrossRef

293. HusebyeE, HellstromPM, SundlerF, et al.Influence of microbial species on small intestinal myoelectric activity and transit in germ‐free rats. Am J Physiol Gastrointest Liver Physiol2001;280:G368.

294. FruhwaldS, HerkE, SchollG, et al.Endotoxin pretreatment modifies peristalsis and attenuates the antipropulsive action of adrenoceptor agonists in the guinea‐pig small intestine. Neurogastroenterol Motil2004;16:213. CrossRef

295. BruinsMJ, LuikingYC, SoetersPB, et al.Effect of prolonged hyperdynamic endotoxemia on jejunal motility in fasted and enterally fed pigs. Ann Surg2003;237:44. CrossRef

296. TurlerA, MooreBA, PezzoneMA, et al.Colonic postoperative inflammatory ileus in the rat. Ann Surg2002;236:56. CrossRef

297. KhanWI. Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse‐Trichinella spiralis model. Parasitology[Review]. 2008;135:671.

298. VenkovaK, PalmerJM, Greenwood‐Van MeerveldB. Nematode‐induced jejunal inflammation in the ferret causes long‐term changes in excitatory neuromuscular responses. J Pharmacol Exp Ther1999;290:96.

299. SpillerR, GarsedK. Postinfectious irritable bowel syndrome. Gastroenterology2009;136:1979. CrossRef

300. CamilleriM. Peripheral mechanisms in irritable bowel syndrome. NEJM2012;367:1626. CrossRef

301. OhmanL, SimrenM. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol[Review]. 2010;7:163. CrossRef

302. WehnerS, SchwarzNT, HundsdoerferR, et al.Induction of IL‐6 within the rodent intestinal muscularis after intestinal surgical stress. Surgery2005;137:436. CrossRef

303. MooreBA, TurlerA, PezzoneMA, et al.Tyrphostin AG 126 inhibits development of postoperative ileus induced by surgical manipulation of murine colon. Am J Physiol Gastrointest Liver Physiol2004;286:G214. CrossRef

304. KalffJC, TurlerA, SchwarzNT, et al.Intra‐abdominal activation of a local inflammatory response within the human muscularis externa during laparotomy. Ann Surg2003;237:316. CrossRef

305. TurlerA, SchwarzNT, TurlerE, et al.MCP‐1 causes leukocyte recruitment and subsequently endotoxemic ileus in rat. Am J Physiol Gastrointest Liver Physiol2002;282:G145. CrossRef

306. HierholzerC, KalffJC, BilliarTR, et al.Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol2004;286:G225. CrossRef

307. FornaiM, BlandizziC, AntonioliL, et al.Differential role of cyclooxygenase 1 and 2 isoforms in the modulation of colonic neuromuscular function in experimental inflammation. J Pharmacol Exp Ther2006;317:938. CrossRef

308. De WinterBY, Van NassauwL, De ManJG, et al.Role of oxidative stress in the pathogenesis of septic ileus in mice. Neurogastroenterol Motil2005;17:251. CrossRef

309. KinoshitaK, HoriM, FujisawaM, et al.Role of TNF‐alpha in muscularis inflammation and motility disorder in a TNBS‐induced colitis model: clues from TNF‐alpha‐deficient mice. Neurogastroenterol Motil2006;18:578. CrossRef

310. FargeasMJ, FioramontiJ, BuenoL. Involvement of capsaicinsensitive afferent nerves in the intestinal motor alterations induced by intestinal anaphylaxis in rats. Int Arch Allergy Immunol1993;101:190. CrossRef

311. FargeasMJ, TheodourouV, FioramontiJ, et al.Relationship between mast cell degranulation and jejunal myoelectric alterations in intestinal anaphylaxis in rats. Gastroenterology1992;102:157.

312. KreissC, ToegelS, BauerAJ. Alpha2‐adrenergic regulation of NO production alters postoperative intestinal smooth muscle dysfunction in rodents. Am J Physiol Gastrointest Liver Physiol2004;287:G658. CrossRef

313. TurlerA, KalffJC, MooreBA, et al.Leukocyte‐derived inducible nitric oxide synthase mediates murine postoperative ileus. Ann Surg2006;244:220. CrossRef

314. De WinterBY, BredenoordAJ, De ManJG, et al.Effect of inhibition of inducible nitric oxide synthase and guanylyl cyclase on endotoxin‐induced delay in gastric emptying and intestinal transit in mice. Shock2002;18:125. CrossRef

315. TorrentsD, PratsN, VergaraP. Inducible nitric oxide synthase inhibitors ameliorate hypermotility observed after T. spiralis infection in the rat. Dig Dis Sci2003;48:1035. CrossRef

316. MascoloZ, IzzoAA, LigrestiA, et al.The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J2002;16:1973.

317. MooreBA, OtterbeinLE, TurlerA, et al.Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine. Gastroenterology2003;124:377. CrossRef

318. MooreBA, OverhausM, WhitcombJ, et al.Brief inhalation of low‐dose carbon monoxide protects rodents and swine from postoperative ileus. Crit Care Med2005;33:1317. CrossRef

319. HooperLV, GordonJI. Commensal host‐bacterial relationships in the gut. Science2001;292:1115. CrossRef

320. HooperLV, WongMH, ThelinA, et al.Molecular analysis of commensal host‐microbial relationships in the intestine. Science2001;291:881. CrossRef

321. SimrenM, BarbaraG, FlintHJ, et al.Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut2013;62:159. CrossRef

322. BercikP, VerduEF, FosterJA, et al.Chronic gastrointestinal inflammation induces anxiety‐like behavior and alters central nervous system biochemistry in mice. Gastroenterology2010;139:2102. CrossRef