Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Motility of the biliary tract

1. SandlerRS, EverhartJE, DonowitzM, et al.The burden of selected digestive diseases in the United States. Gastroenterology2002;122:1500. CrossRef

2. MaweGM, LavoieL, NelsonMT, et al.Neuromuscular function in the gallbladder and sphincter of oddi. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract. New York: Elsevier; 2012: 847. CrossRef

3. CaiW, GabellaG. Innervation of the gallbladder and biliary pathways in the guinea pig. J Anat1983;136:97.

4. KeastJR, FurnessJB, CostaM. Distribution of certain peptide containing nerve fibres and endocrine cells in the gastrointestinal mucosa of five mammalian species. J Comp Neurol1985;236:403. CrossRef

5. MaweGM, GershonMD. Structure, afferent innervation, and transmitter content of ganglia of the guinea pig gallbladder: relationship to the enteric nervous system. J Comp Neurol1989;283:374. CrossRef

6. TalmageEK, PouliotWA, SchemannM, et al.Structure and chemical coding of human, canine and opossum gallbladder ganglia. Cell Tissue Res1996;284:289. CrossRef

7. BauerAJ, HananiM, MuirTC, et al.Intracellular recordings from gallbladder ganglia of opossums. Am J Physiol1991;260:G299.

8. De GiorgioRD, ParodiJE, BrechaNC, et al.Nitric oxide producing neurons in the monkey and human digestive system. J Comp Neurol1994;342:619. CrossRef

9. De GiorgioRD, ZittelTT, ParodiJE, et al.Peptide immunoreactivities in the ganglionated plexuses and nerve fibers innervating the human gallbladder. J Auton Nerv Syst1995;51:37. CrossRef

10. MeedeniyaAC, SchloitheAC, ToouliJ, et al.Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush‐tailed possum (Trichosurus vulpecula). Neurogastroenterol Motil2003;15:383. CrossRef

11. MaweGM, TalmageEK, CornbrooksEB, et al.Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia. Microsc Res Tech1997;39:1. CrossRef

12. TalmageEK, PouliotWA, CornbrooksEB, et al.Transmitter diversity in ganglion cells of the guinea pig gallbladder: an immunohistochemical study. J Comp Neurol1992;317:45. CrossRef

13. MaweGM, EllisLM. Chemical coding of intrinsic and extrinsic nerves in the guinea pig gallbladder: distributions of PACAP and orphanin FQ. Anat Rec2001;262:101. CrossRef

14. UemuraS, PompoloS, FurnessJB, et al.Nitric oxide synthase in neurons of the human gall‐bladder and its colocalization with neuropeptides. J Gastroenterol Hepatol1997;12:257. CrossRef

15. HarlingH, MessellT, JensenSL, et al.Distribution and effect of galanin on gallbladder and sphincter of Oddi motility in the pig. HPB Surg1991;3:279. CrossRef

16. CoxMR, PadburyRT, HarveyJR, et al.Substance P stimulates sphincter of Oddi motility and inhibits trans‐ sphincteric flow in the Australian brush‐tailed possum. Neurogastroenterol Motil1998;10:165. CrossRef

17. Gomez‐PinillaPJ, CamelloPJ, PozoMJ. Effects of melatonin on gallbladder neuromuscular function in acute cholecystitis. J Pharmacol Exp Ther2007;323:138. CrossRef

18. Gomez‐PinillaPJ, Camello‐AlmarazC, MorenoR, et al.Melatonin treatment reverts age‐related changes in Guinea pig gallbladder neuromuscular transmission and contractility. J Pharmacol Exp Ther2006;319:847. CrossRef

19. MaweGM. Intracellular recording from neurones of the guinea‐pig gall‐bladder. J Physiol1990;429:323. CrossRef

20. HillsleyK, JenningsLJ, MaweGM. Neural control of the gallbladder: an intracellular study of human gallbladder neurons. Digestion1998;59:125. CrossRef

21. MaweGM. Tachykinins as mediators of slow EPSPs in guinea‐pig gall‐bladder ganglia. Involvement of neurokinin‐3 receptors. J Physiol1995;485:513. CrossRef

22. MaggiCA, SannticioliP, RenziD, et al.Release of substance P‐ and calcitonin gene‐related peptide‐like immunoreactivity and motor response of the isolated guinea pig gallbladder to capsaicin. Gastroenterology1989;96:1093.

23. CaiW, GabellaG. The musculature of the gall bladder and biliary pathways in the guinea‐pig. J Anat1983;136:237.

24. ZhangL, BonevAD, NelsonMT, et al.Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Am J Physiol1993;265:C1552.

25. BalembaOB, SalterMJ, HeppnerTJ, et al.Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol2006;290:G655. CrossRef

26. ParrE, PozoMJ, HorowitzB, et al.ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol2003;284:G392. CrossRef

27. PozoMJ, PerezGJ, NelsonMT, et al.Ca(2+) sparks and BK currents in gallbladder myocytes: role in CCK‐ induced response. Am J Physiol Gastrointest Liver Physiol2002;282:G165. CrossRef

28. BalembaOB, HeppnerTJ, BonevAD, et al.Calcium waves in intact Guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol2006;291:G717. CrossRef

29. MoralesS, CamelloPJ, MaweGM, et al.Characterization of intracellular Ca(2+) stores in gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol2005;288:G507. CrossRef

30. MoralesS, CamelloPJ, RosadoJA, et al.Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cell Signal2005;17:635. CrossRef

31. Gomez‐PinillaPJ, MoralesS, Camello‐AlmarazC, et al.Changes in guinea pig gallbladder smooth muscle Ca2+ homeostasis by acute acalculous cholecystitis. Am J Physiol Gastrointest Liver Physiol2006;290:G14. CrossRef

32. SomlyoAP, SomlyoAV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev2003;83:1325. CrossRef

33. Camello‐AlmarazC, MaciasB, Gomez‐PinillaPJ, et al.Developmental changes in Ca2+ homeostasis and contractility in gallbladder smooth muscle. Am J Physiol Cell Physiol2009;296:C783. CrossRef

34. MaciasB, Gomez‐PinillaPJ, Camello‐AlmarazC, et al.Aging impairs Ca2+ sensitization pathways in gallbladder smooth muscle. Age (Dordr)2012;34:881. CrossRef

35. LavoieB, BalembaOB, NelsonMT, et al.Morphological and physiological evidence for interstitial cell of Cajal (ICC)‐like cells in the guinea pig gallbladder. J Physiol2007;579:487. CrossRef

36. PasternakA, GajdaM, GilK, et al.Evidence of interstitial Cajal‐like cells in human gallbladder. Folia Histochem Cytobiol2012;50:581. CrossRef

37. PasternakA, GilK, MatyjaA, et al.Loss of gallbladder interstitial Cajal‐like cells in patients with cholelithiasis. Neurogastroenterol Motil2013;25:e17. CrossRef

38. von SchrenckT, SieversJ, MirauS, et al.Characterization of muscarinic receptors on guinea pig gallbladder smooth muscle. Gastroenterology1993;105:1341. CrossRef

39. EltzeM, KonigH, UllrichB, et al.Contraction of guinea‐pig gallbladder: muscarinic M3 or M4 receptors?Eur J Pharmacol1997;332:77. CrossRef

40. AkiciA, KaraalpA, IskenderE, et al.Further evidence for the heterogeneity of functional muscarinic receptors in guinea pig gallbladder. Eur J Pharmacol2000;388:115. CrossRef

41. ParkmanHP, PaganoAP, RyanJP. Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions [In Process Citation]. Am J Physiol1999;276(5 Pt 1):G1243.

42. TakahashiT, KurosawaS, OwyangC. Regulation of PI hydrolysis and cAMP formation by muscarinic M3 receptor in guinea pig gallbladder. Am J Physiol1994;267(4 Pt 1):G523.

43. ChenQ, YuP, de PetrisG, et al.Distinct muscarinic receptors and signal transduction pathways in gallbladder muscle. J Pharmacol Exp Ther1995;273:650.

44. YauWM. Mode of stimulation of gallbladder contraction by substance K. Am J Physiol1990;259:G838.

45. DahlstrandC. The vagal nerves and peptides in the control of extrahepatic biliary motility. Acta Physiol Scand1990;139:1. CrossRef

46. FunakoshiA, FukamizuY, MiyasakaK. Mechanism of cholecystokinin‐A‐ receptor antagonist on human pancreatic exocrine secretion. Localization of CCK‐A receptor in the human duodenum. Digestion1999;60(Suppl 1):75. CrossRef

47. HarringtonK, BomzonA, SharkeyKA, et al.Differential sensitivities of the sphincter of Oddi and gallbladder to cholecystokinin in the guinea pig: their role in transsphincteric bile flow. Can J Physiol Pharmacol1992;70:1336. CrossRef

48. PozoMJ, SalidoMD, MadridJA, et al.In‐vitro effect of pirenzepine on motility of canine gall‐bladder. J Pharm Pharmacol1990;42:89. CrossRef

49. AlcónS, MoralesS, CamelloP, et al.Tyrosine kinases regulate basal tone and responses to agonists in the guinea pig gallbladder through modulation of Ca2+ mobilization. Analyt Pharm2001;2:48.

50. ShiroharaH, TabaruA, OtsukiM. Effects of intravenous infusion of amino acids on cholecystokinin release and gallbladder contraction in humans. J Gastroenterol1996;31:572. CrossRef

51. TakahashiT, MayD, OwyangC. Cholinergic dependence of gallbladder response to cholecystokinin in the guinea pig in vitro. Am J Physiol1991;261:G565.

52. TakahashiI, SuzukiT, AizawaI, et al.Comparison of gallbladder contraction induced by motilin and cholecystokinin in dogs. Gastroenterology1982;82:419.

53. FisherRS, RockE, MalmudLS. Cholinergic effects on gallbladder emptying in humans. Gastroenterology1985;89:716.

54. MarzioL, DiGiammarcoAM, NeriM, et al.Atropine antagonizes cholecystokinin and cerulein induced gallbladder evacuation in man: a real time ultrasonographic study. Am J Gastroenterol1985;80:1.

55. StrahKM, PapprasTN, MelendezRL, et al.Contrasting cholinergic dependance of pancreatic and gallbladder responses to cholecystokinin. Am J Physiol1986;250:G665.

56. BeharJ, BiancaniP. Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology1987;92:764.

57. PozoMJ, SalidaGM, MadridJA. Cholyecystokinin‐induced gallbladder contraction is influenced by nicotinic and muscarinic receptors. Arch Int Physiol Biochim1989;97:403.

58. HanyuN, DoddsWJ, LaymanRD, et al.Mechanism of cholecystokinin‐induced contraction of the opossum gallbladder. Gastroenterology1990;98:1299.

59. BrotschiEA, PattavinoJ, WilliamsLFJr. Intrinsic nerves affect gallbladder contraction in the guinea pig. Gastroenterology1990;99:826.

60. TakahashiI, DoddsWJ, HoganWJ, et al.Effect of vagotomy on biliary‐tract motor activity in the opossum. Dig Dis Sci1988;33(4):481. CrossRef

61. MaweGM. The role of cholecystokinin in ganglionic transmission in the guinea‐pig gall‐bladder. J Physiol1991;439:89. CrossRef

62. MaweGM, GokinAP, WellsDG. Actions of cholecystokinin and norepinephrine on vagal inputs to ganglionic cells in guinea pig gallbladder. Am J Physiol1994;267:G1146.

63. RaybouldHE, LloydKC. Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways. Ann N Y Acad Sci1994;713:143. CrossRef

64. LiY, HaoY, OwyangC. High‐affinity CCK‐A receptors on the vagus nerve mediate CCK‐stimulated pancreatic secretion in rats. Am J Physiol1997;273(3 Pt 1):G679.

65. MascleeAAM, JansenJBMJ, RiessenWMM, et al.Effect of truncal vagotomy on cholecystokinin release, gallbladder contraction, and gallbladder senstivity to cholecystokinin in humans. Gastroenterology1990;98:1338.

66. ShafferEA. Control of gall‐bladder motor function. Aliment Pharmacol Ther2000;14(Suppl 2):2. CrossRef

67. SacconeGT, HarveyJR, LiuYF, et al.Coordination of biliary and upper gastrointestinal motility in the fasted conscious pig. Neurogastroenterol Motil1996;8:51. CrossRef

68. WeisbrodtNW, CopelandEM, MooreEP, et al.Effect of vagotomy on electrical activity of the small intestine of the dog. Am J Physiol1975;228:650.

69. QvistN, Oster‐JorgensenE, PedersenSA, et al.Gastric antrectomy with selective gastric vagotomy does not influence gallbladder motility during interdigestive and postprandial periods. Dig Dis Sci1996;41:835. CrossRef

70. MeedeniyaAC, Al‐JiffryBO, KonomiH, et al.Inhibitory motor innervation of the gall bladder musculature by intrinsic neurones containing nitric oxide in the Australian brush‐tailed possum (Trichosurus vulpecula). Gut2001;49:692. CrossRef

71. RyanJ, CohenS. Effect of vasoactive intestinal polypeptide on basal and cholecystokinin induced gallbladder pressure. Gastroenterology1977;73:870.

72. RyanJP, RyaveS. Effect of vasoactive intestinal polypeptide on gallbladder smooth muscle in vitro. Am J Physiol1978;234:E44.

73. DahlstrandC, TheordorsonE, DahlströmA, et al.VIP‐antisera inhibit the relaxatory motor responses of the feline sphincter of Oddi and gallbladder induced by VIP or vagal nerve stimulation. Acta Physiol Scand1989;137:375. CrossRef

74. ChenQ, LeeK, XiaoZ, et al.Mechanism of gallbladder relaxation in the cat: role of norepinephrine. J Pharmacol Exp Ther1998;285:475.

75. Schaffalitzky de MuckadellOB, FahrenkrugJ, HolstJJ. Release of vasoactive intestinal polypeptide (VIP) by electric stimulation of the vagal nerves. Gastroenterology1977;72:373.

76. BjorckS, FahrenkrugJ, JivegardL, et al.Release of immunoreactive vasoactive intestinal peptide (VIP) from the gallbladder in response to vagal stimulation. Acta Physiol Scand1986;128:639. CrossRef

77. MourelleM, GuarnerF, MoleroX, et al.Regulation of gall bladder motility by the arginine‐nitric oxide pathway in guinea pigs. Gut1993;34:911. CrossRef

78. McKirdyML, McKirdyHC, JohnsonCD. Non‐adrenergic non‐cholinergic inhibitory innervation shown by electrical field stimulation of isolated strips of human gall bladder muscle. Gut1994;35:412. CrossRef

79. ChenQ, AmaralJ, OhS, et al.Gallbladder relaxation in patients with pigment and cholesterol stones. Gastroenterology1997;113:930. CrossRef

80. AlcónS, MoralesS, SalidoG, et al.Redox‐based mechanism for the contractile and relaxing effects of NO in the guinea‐pig gallbladder. J Physiol2001;532:793. CrossRef

81. MaggiCA, PatacchiniR, RenziD, et al.Effect of thiorphan on response of the guinea‐pig gallbladder to tachykinins. Eur J Pharmacol1989;165:51. CrossRef

82. PerssonCGA. Adrenoceptor functions in the cat choledochoduodenal junction in vitro. Br J Pharmacol1971;42:447. CrossRef

83. PerssonCGA. Dual effects of the sphincter of Oddi and gallbladder induced by stimulation of the right splanchnic nerves. Acta Physiol Scand1973;87:334. CrossRef

84. YamasatoT, NakayamaS. Participation of the parasympathetic and sympathetic nerves in regulation of gallbladder motility in the dog. Acta Med Okayama1990;44:79.

85. MaweGM. Noradrenaline acts as a presynaptic inhibitory neurotransmitter in ganglia of the guinea‐pig gall‐bladder. J Physiol1993;461:378.

86. FraquelliM, BardellaMT, PeracchiM, et al.Gallbladder emptying and somatostatin and cholecystokinin plasma levels in celiac disease. Am J Gastroenterol1999;94:1866. CrossRef

87. EastmanRC, ArakakiRF, ShawkerT, et al.A prospective examination of octreotide‐induced gallbladder changes in acromegaly. Clin Endocrinol (Oxf)1992;36:265. CrossRef

88. MoschettaA, StolkMF, RehfeldJF, et al.Severe impairment of postprandial cholecystokinin release and gall‐bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther2001;15:181. CrossRef

89. KrejsGJ, OrciL, ConlonJM, et al.Somatostatinoma syndrome: biochemical, morphologic and clinical features. N Engl J Med1979;301:285. CrossRef

90. BeharJ, BiancaniP. Pharmacology of the biliary tract. In: SchulzS, WoodJ, RaunerB(eds). Handbook of Physiology Section 6 The Gastrointestinal System. New York: Oxford University; 1989: 1103.

91. MaselliMA, PiepoliAL, PezzollaF, et al.Effect of somatostatin on human gallbladder motility: an in vitro study. Neurogastroenterol Motil1999;11:47. CrossRef

92. YamasakiT, ChijiiwaK, ChijiiwaY. Somatostatin inhibits cholecystokinin‐induced contraction of isolated gallbladder smooth muscle cells. J Surg Res1995;59:743. CrossRef

93. VuMK, Van OostayenJA, BiemondI, et al.Effect of somatostatin on postprandial gallbladder relaxation. Clin Physiol2001;21:25. CrossRef

94. ChoiM, MoschettaA, BookoutAL, et al.Identification of a hormonal basis for gallbladder filling. Nat Med2006;12(11):1253. CrossRef

95. MaweGM. Oddi: the structure of oddi's sphincter. In: DanielEE, TsuchidaS, TomitaT, et al. (eds). Sphincters: Normal Function ‐ Changes in Diseases. Boca Raton, FL: CRC Press, Inc.; 1992: 175.

96. WellsDG, MaweGM. Physiological and morphological properties of neurons in the sphincter of Oddi region of the guinea pig. Am J Physiol1993;265:G258.

97. WellsDG, TalmageEK, MaweGM. Immunohistochemical identification of neurons in ganglia of the Guinea pig sphincter of Oddi. J Comp Neurol1995;352:106. CrossRef

98. Funch‐JensenP, KraglundK, DjurhuusJC. Multimodal contractile activity of the canine sphincter of Oddi. Eur Surg Res1984;16:312. CrossRef

99. ToouliJ, DoddsWJ, HondaR, et al.Motor function of the opossum sphincter of Oddi. J Clin Invest1983;71:208. CrossRef

100. ElbrondH, HunicheB, OstergaardL. Rabbit sphincter of Oddi and duodenum are regulated by slow waves with a common basic‐mode activity. Scand J Gastroenterol1990;25(5):534. CrossRef

101. GrivellMB, WoodsCM, GrivellAR, et al.The possum sphincter of Oddi pumps or resists flow depending on common bile duct pressure: a multilumen manometry study. J Physiol2004;558(Pt 2):611. CrossRef

102. WoodsCM, MaweGM, ToouliJ, et al.The sphincter of Oddi: understanding its control and function. Neurogastroenterol Motil2005;17(Suppl 1):31. CrossRef

103. ToouliJ, BakerRA. Innervation of the sphincter of Oddi: physiology and considerations of pharmacological intervention in biliary dyskinesia. Pharmacol Ther1991;49:269. CrossRef

104. GeenenJE, HoganWJ, DoddsWJ, et al.Intraluminal pressure recording from the human sphincter of Oddi. Gastroenterology1980;78:317.

105. WoodsCM, SchloitheAC, SimulaME, et al.Proximal and distal segments of the possum sphincter of Oddi respond differently to neural and cholecystokinin octapeptide stimulation in vitro. Dig Surg2000;17:241. CrossRef

106. Al‐JiffryBO, JoblingJM, SchloitheAC, et al.Secretin induces variable inhibition of motility in different parts of the Australian possum sphincter of Oddi. Neurogastroenterol Motil2001;13:449. CrossRef

107. WoodsCM, ToouliJ, SacconeGT. Exogenous adenosine triphosphate and adenosine stimulate proximal sphincter of oddi motility via neural mechanisms in the anesthetized Australian possum. Dig Dis Sci2006;51:1347. CrossRef

108. HaradaT, KatsuragiT, FurukawaT. Release of acetylcholine mediated by cholecystokinin receptor from the guinea pig sphincter of Oddi. J Pharmacol Exp Ther1986;239:554.

109. BeharJ, BiancaniP. Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology1987;92:764.

110. ToouliJ, HoganWJ, GeenenJE, et al.Action of cholecystokinin‐octapeptide on sphincter of Oddi basal pressure and phasic wave activity in humans. Surgery1982;92:497.

111. TokunagaY, CoxKL, ItasakaH, et al.Characterization of cholecystokinin receptors on the human sphincter of Oddi. Surgery1993;114:942.

112. ElbrondH, TottrupA, VirchenkoS, et al.Effects of transmural field stimulation in isolated muscle strips from rabbit sphincter of Oddi and duodenum. Acta Physiol Scand1994;151:91. CrossRef

113. AllescherHD, LuS, DanielEE. Nitric oxide as putative nonadrenergic noncholinergic inhibitory transmitter in the opossum sphincter of Oddi. Can J Physiol Pharmacol1993;71:525. CrossRef

114. BakerRA, SacconeGT, BrookesSJ, et al.Nitric oxide mediates nonadrenergic, noncholinergic neural relaxation in the Australian possum. Gastroenterology1993;105:1746.

115. KaufmanHS, ShermakMA, MayCA, et al.Nitric oxide inhibits resting sphincter of Oddi activity. Am J Surg1993;165:74. CrossRef

116. KennedyAL, SacconeGT, MaweGM. Direct neuronal interactions between the duodenum and the sphincter of Oddi. Curr Gastroenterol Rep2000;2:104. CrossRef

117. ScottRB, StrasbergSM, El‐SharkawyTY, et al.Regulation of the fasting enterohepatic circulation of bile acids by the migrating myoelectric complex in dogs. J Clin Invest1983;71:644. CrossRef

118. TakahashiI, KernMK, DoddsWJ, et al.Contraction pattern of opossum gallbladder during fasting and after feeding. Am J Physiol1986;250(2 Pt 1):G227.

119. MarzioL, NeriM, CaponeF, et al.Gallbladder contraction and its relationship to interdigestive duodenal motor activity in normal human subjects. Dig Dis Sci1988;33:540. CrossRef

120. WorthleyCS, BakerRA, IannosJ, et al.Human fasting and postprandial sphincter of Oddi motility. Br J Surg1989;76:709. CrossRef

121. TanakaM, SenningerN, RunkelN, et al.Sphincter of Oddi cyclic motility. Effect of translocation of the papilla in opossums. Gastroenterology1990;98:347.

122. TanakaM, SenningerN, RunkelN, et al.Hormonal control of opossum sphincter of Oddi motility: role of myoneural continuity to duodenum. J Surg Res1992;53:91. CrossRef

123. ShodaJ, HeB‐F, TanakaN, et al.Increase of deoxycholate in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo synthesis of cholesterol and bile acids in liver, gallbladder emptying and small intestinal transit. Hepatology1995;21:1291.

124. JazrawiRP, PazziP, PetroniML, et al.Postprandial gallbladder motor function: refilling and turnover of bile in health and in cholelithiasis. Gastroenterology1995;109:582. CrossRef

125. LaMorteW. Biliary motility and abnormalities associated with cholesterol cholelithiasis. Curr Opin Gastroenterol1993;9:810. CrossRef

126. BeharJ, LeeKY, ThompsonWR, et al.Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology1989;97:1479.

127. ChenQ, AmaralJ, BiancaniP, et al.Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology1999;116:678. CrossRef

128. LiYF, MoodyFG, WeisbrodtNW, et al.Gallbladder contractility and mucus secretion after cholesterol feeding in the prairie dog. Surgery1986;100:900.

129. FridhandlerTM, DavisonJS, ShafferEA. Defective gallbladder ocntractility in the ground squirrel and prairie dog during the early stages of cholesterol gallstone formation. Gastroenterology1983;85:830.

130. SatoN, MiyasakaK, SuzukiS, et al.Lack of cholecystokinin‐A receptor enhanced gallstone formation: a study in CCK‐A receptor gene knockout mice. Dig Dis Sci2003;48:1944. CrossRef

131. WangDQ, SchmitzF, KopinAS, et al.Targeted disruption of the murine cholecystokinin‐1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest2004;114:521. CrossRef

132. XuQ‐W, ShafferEA. Cisapride improves gallbladder contractility and bile lipid composition in an animal model of gallstone disease. Gastroenterology1993;105:1184.

133. XuQW, ScottRB, TanDT, et al.Effect of the prokinetic agent, erythromycin, in the Richardson ground squirrel model of cholesterol gallstone disease. Hepatology1998;28:613. CrossRef

134. XuQW, MantleM, PauletzkiJG, et al.Sustained gallbladder stasis promotes cholesterol gallstone formation in the ground squirrel. Hepatology1997;26:831. CrossRef

135. YuPR, ChenQA, BiancaniP, et al.Membrane cholesterol alters gallbladder muscle contractility in prairie dogs. Am J Physiol1996;34:G56.

136. JenningsLJ, XuQW, FirthTA, et al.Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle. Am J Physiol1999;277(5 Pt 1):G1017.

137. XiaoZL, ChenQ, AmaralJ, et al.CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am J Physiol1999;276(6 Pt 1):G1401.

138. XiaoZL, ChenQ, AmaralJ, et al.Defect of receptor‐G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol2000;278:G251.

139. Van ErpecumKJ, Van Berge‐HenegouwenGP. Gallstones: an intestinal disease?Gut1999;44:435. CrossRef

140. ThomasLA, VeyseyMJ, BathgateT, et al.Mechanism for the transit‐induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology2000;119:806. CrossRef

141. HussainiSH, PereiraSP, MurphyGM, et al.Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology1995;22:1735.

142. ThimisterPW, HopmanWP, TangermanA, et al.Effect of intraduodenal bile salt on pancreaticobiliary responses to bombesin and to cholecystokinin in humans. Hepatology1998;28:1454. CrossRef

143. XuQW, FreedmanSM, ShafferEA. Inhibitory effect of bile salts on gallbladder smooth muscle contractility in the guinea pig in vitro. Gastroenterology1997;112:1699. CrossRef

144. XiaoZL, RhoAK, BiancaniP, et al.Effects of bile acids on the muscle functions of guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol2002;283:G87. CrossRef

145. LavoieB, BalembaOB, GodfreyC, et al.Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol2010 ;588(Pt 17):3295. CrossRef

146. XiaoZL, BiancaniP, CareyMC, et al.Hydrophilic but not hydrophobic bile acids prevent gallbladder muscle dysfunction in acute cholecystitis. Hepatology2003;37:1442. CrossRef

147. TomidaS, AbeiM, YamaguchiT, et al.Long‐term ursodeoxycholic acid therapy is associated with reduced risk of biliary pain and acute cholecystitis in patients with gallbladder stones: a cohort analysis. Hepatology1999;30:6. CrossRef

148. GuarinoMP, CarottiS, SarzanoM, et al.Short‐term ursodeoxycholic acid treatment improves gallbladder bile turnover in gallstone patients: a randomized trial. Neurogastroenterol Motil2005;17:680. CrossRef

149. BariePS, FischerE. Acute acalculous cholecystitis. J Am Coll Surg1995;180:232.

150. SavocaPE, LongoWE, ZuckerKA, et al.The increasing prevalence of acalculous cholecystitis in outpatients. Results of a 7‐year study. Ann Surg1990;211:433. CrossRef

151. ParithivelVS, GerstPH, BanerjeeS, et al.Acute acalculous cholecystitis in young patients without predisposing factors. Am Surg1999;65:366.

152. KalliafasS, ZieglerDW, FlancbaumL, et al.Acute acalculous cholecystitis: incidence, risk factors, diagnosis, and outcome. Am Surg1998;64:471.

153. CullenJJ, MaesEB, AggrawalS, et al.Effect of endotoxin on opossum gallbladder motility: a model of acalculous cholecystitis. Ann Surg2000;232:202. CrossRef

154. ParkmanHP, BogarLJ, BartulaLL, et al.Effect of experimental acalculous cholecystitis on gallbladder smooth muscle contractility. Dig Dis Sci1999;44:2235. CrossRef

155. SusticA, KrznaricZ, UravicM, et al.Influence on gallbladder volume of early postoperative gastric supply of nutrients. Clin Nutr2000;19:413. CrossRef

156. DotyJE, PittHA, Porter‐FinkV, et al.Cholecystokinin prophylaxis of parenteral nutrition‐induced gallbladder disease. Ann Surg1985;201:76.

157. LedeboerM, MascleeAA, BiemondI, et al.Gallbladder motility and cholecystokinin secretion during continuous enteral nutrition. Am J Gastroenterol1997;92:2274.

158. CurranTJ, UzoaruI, DasJB, et al.The effect of cholecystokinin‐octapeptide on the hepatobiliary dysfunction caused by total parenteral nutrition. J Pediatr Surg1995;30:242. CrossRef

159. NealonWH, UppJR, AlexanderRW, et al.Intravenous amino acids stimulate human gallbladder emptying and hormone release. Am J Physiol1990;259(2 Pt 1):G173.

160. ZoliG, BallingerA, HealyJ, et al.Promotion of gallbladder emptying by intravenous aminoacids. Lancet1993;341:1240. CrossRef

161. KalfarentzosF, VagenasC, MichailA, et al.Gallbladder contraction after administration of intravenous amino acids and long‐chain triacylglycerols in humans. Nutrition1991;7:347.

162. GuarraciFA, PozoMJ, PalomaresSM, et al.Opioid agonists inhibit excitatory neurotransmission in ganglia and at the neuromuscular junction in Guinea pig gallbladder. Gastroenterology2002;122:340. CrossRef

163. OttoB, MaweGM, RieplRL. mu‐Opiate receptor agonist loperamide blocks bethanechol‐induced gallbladder contraction, despite higher cholecystokinin plasma levels in man. Neurogastroenterol Motil2005;17:761. CrossRef

164. MyersSI, BartulaL. Human cholecystitis is associated with increased gallbladder prostaglandin I2 and prostaglandin E2 synthesis. Hepatology1992;16:1176. CrossRef

165. WoodJR, StamfordIF. Prostaglandins in chronic cholecystitis. Prostaglandins1977;13:97. CrossRef

166. KaminskiDL, DeshpandeY, ThomasL, et al.Evaluation of the role of prostaglandins E and F in human cholecystitis. Prostaglandins Leukot Med1984;16:109. CrossRef

167. MyersSI, BartulaL, Kalley‐TaylorB. Bradykinin and not cholecystokinin stimulates exaggerated prostanoid release from the inflamed rabbit gallbladder. Prostaglandins Leukot Essent Fatty Acids1992;47:35. CrossRef

168. BogarLJ, BartulaLL, ParkmanHP, et al.Enhanced bradykinin‐stimulated prostaglandin release in the acutely inflamed guinea pig gallbladder is due to new synthesis of cyclooxygenase 1 and prostacyclin synthase. J Surg Res1999;84:71. CrossRef

169. PrystowskyJB, RegeRV. Interleukin‐1 mediates guinea pig gallbladder inflammation in vivo. J Surg Res1997;71:123.

170. GrossmannEM, LongoWE, MazuskiJE, et al.Role of cytosolic phospholipase A2 in cytokine‐stimulated prostaglandin release by human gallbladder cells. J Gastrointest Surg2000;4:193. CrossRef

171. TognettoM, TrevisaniM, MaggioreB, et al.Evidence that PAR‐1 and PAR‐2 mediate prostanoid‐dependent contraction in isolated guinea‐pig gallbladder. Br J Pharmacol2000;131:689. CrossRef

172. VrackoJ, WiechelKL. Trypsin level in gallbladder bile and ductitis and width of the cystic duct. Hepatogastroenterology2000;47:115.

173. ThornellE. Mechanisms in the development of acute cholecystitis and biliary pain. A study on the role of prostaglandins and effects of indomethacin. Scand J Gastroenterol Suppl1982;76:1.

174. ParkmanHP, JamesAN, ThomasRM, et al.Effect of indomethacin on gallbladder inflammation and contractility during acute cholecystitis. J Surg Res2001;96:135. CrossRef

175. WoodJR, SaverymuttuSH, AshbrookeAB, et al.Effects of various prostanoids on gallbladder muscle. Adv Prostaglandin Thromboxane Res1980;8:1569.

176. ThornellE, SvanvikJ, WoodJR. Effects of intra‐arterial prostoglandin E2 on gallbladder fluid transport, motility, and hepatic bile flow in the cat. Gastroenterology1981;16:1083.

177. LeeSP, LaMontJT, CareyMC. Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones: studies in the prairie dog. J Clin Invest1981;67:1712. CrossRef

178. XiaoZL, ChenQ, BiancaniP, et al.Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs. Am J Physiol Gastrointest Liver Physiol2001;281:G490.

179. JenningsLJ, MaweGM. PGE2 hyperpolarizes gallbladder neurons and inhibits synaptic potentials in gallbladder ganglia. Am J Physiol1998;274(3 Pt 1):G493.

180. CullenJJ, ConklinJL, EphgraveKS, et al.The role of antioxidant enzymes in the control of opossum gallbladder motility. J Surg Res1999;86:155. CrossRef

181. PozoMJ, Gomez‐PinillaPJ, Camello‐AlmarazC, et al.Melatonin, a potential therapeutic agent for smooth muscle‐related pathological conditions and aging. Curr Med Chem2010;17:4150. CrossRef

182. Gomez‐PinillaPJ, CamelloPJ, TresguerresJA, et al.Tempol protects the gallbladder against ischemia/reperfusion. J Physiol Biochem2010;66:161. CrossRef

183. Gomez‐PinillaPJ, CamelloPJ, PozoMJ. Protective effect of melatonin on Ca2+ homeostasis and contractility in acute cholecystitis. J Pineal Res2008;44:250. CrossRef

184. XiaoZL, AndradaMJ, BiancaniP, et al.Reactive oxygen species (H(2)O(2)): effects on the gallbladder muscle of guinea pigs. Am J Physiol Gastrointest Liver Physiol2002;282:G300. CrossRef

185. XiaoZL, BiancaniP, BeharJ. Role of PGE2 on gallbladder muscle cytoprotection of guinea pigs. Am J Physiol Gastrointest Liver Physiol2004;286:G82. CrossRef

186. MoummiC, GulliksonGW, GaginellaTS. Monochloramine induces contraction of guinea pig gallbladder via two different pathways. Am J Physiol1991;260(6 Pt 1):G881.

187. ParkmanHP, JamesAN, BogarLJ, et al.Effect of acalculous cholecystitis on gallbladder neuromuscular transmission and contractility. J Surg Res2000;88:186. CrossRef

188. AlconS, MoralesS, CamelloPJ, et al.A redox‐based mechanism for the contractile and relaxing effects of NO in the guinea‐pig gall bladder. J Physiol2001;532(Pt 3):793. CrossRef

189. JenningsLJ, SalidoGM, PozoMJ, et al.The source and action of histamine in the isolated guinea‐pig gallbladder. Inflamm Res1995;44:447. CrossRef

190. WiseWEJr, LaMorteWW, GacaJM, et al.Reciprocal H1‐ and H2‐histamine receptors in guinea pig gallbladder. J Surg Res1982;33:146. CrossRef

191. HemmingJM, GuarraciFA, FirthTA, et al.Actions of histamine on muscle and ganglia of the guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol2000;279:G622.

192. Al‐JiffryBO, ChenJW, ToouliJ, et al.Endothelins induce gallbladder contraction independent of elevated blood pressure in vivo in the Australian possum. J Gastrointest Surg2002;6:699. CrossRef

193. Al‐JiffryBO, MeedeniyaAC, ChenJW, et al.Endothelin‐1 induces contraction of human and Australian possum gallbladder in vitro. Regul Pept2001;102:31. CrossRef

194. Al‐JiffryBO, ToouliJ, SacconeGT. Endothelin‐3 induces both human and opossum gallbladder contraction mediated mainly by endothelin‐B receptor subtype in vitro. J Gastroenterol Hepatol2002;17:324. CrossRef

195. Al‐JiffryBO, ShafferEA, WoodsCM, et al.Endogenous endothelin increases gallbladder tone and leads to acute cholecystitis in the Australian possum. Neurogastroenterol Motil2004;16:125. CrossRef

196. MaurerKJ, RaoVP, GeZ, et al.T‐cell function is critical for murine cholesterol gallstone formation. Gastroenterology2007;133:1304. CrossRef

197. LavoieB, NauschB, ZaneEA, et al.Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil2012;24:e313. CrossRef

198. TanakaM, IkedaS, NakayamaF. Change in bile duct pressure responses after cholecystectomy: loss of gallbladder as a pressure reservoir. Gastroenterology1984;87:1154.

199. TorsoliA, CorazziariE, HabibFI, et al.Pressure relationships within the human bile tract. Normal and abnormal physiology. Scand J Gastroenterol Suppl1990;175:52. CrossRef

200. ToouliJ. Evaluation of sphincter of Oddi function. Aust N Z J Surg1989;59:445. CrossRef

201. TorsoliA. Physiology of the human sphincter of Oddi. Endoscopy1988;20(Suppl 1):166. CrossRef

202. LehmanGA, ShermanS. Sphincter of Oddi dysfunction. Int J Pancreatol1996;20:11.