Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Electrolyte secretion and absorption in the small intestine and colon

1. BarrettKE, DharmsathaphornK. Transport of water and electrolytes in the gastrointestinal tract: physiological mechanisms, regulation and methods for study. In: NarinsRG(ed). Maxwell and Kleeman's Clinical Disorders of Fluid and Electrolyte Metabolism, Fifth Edition. New York: McGraw‐Hill, Inc.; 1994: 493.

2. NejsumLN, NelsonWJ. Epithelial cell surface polarity: the early steps. Front Biosci2009;14:1088. CrossRef

3. Rodriguez‐BoulanE, KreitzerG, MuschA. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol2005;6:233. CrossRef

4. AliS, HallJ, HazlewoodGP, et al.A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J1996;315(Pt 3):857. CrossRef

5. SchuckS, SimonsK. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci2004;117(Pt 25):5955. CrossRef

6. UrquhartP, PangS, HooperNM. N‐glycans as apical targeting signals in polarized epithelial cells. Biochem Soc Symp2005;●●:39. CrossRef

7. LowSH, VasanjiA, NanduriJ, et al.Syntaxins 3 and 4 are concentrated in separate clusters on the plasma membrane before the establishment of cell polarity. Mol Biol Cell2006;17:977. CrossRef

8. SharmaN, LowSH, MisraS, et al.Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J Cell Biol2006;173:937. CrossRef

9. RealesE, SharmaN, LowSH, et al.Basolateral sorting of syntaxin 4 is dependent on its N‐terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE2011;6:e21181. CrossRef

10. FuruseM, TsukitaS. Claudins in occluding junctions of humans and flies. Trends Cell Biol2006;16:181. CrossRef

11. TsukitaS, FuruseM, ItohM. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol2001;2:285. CrossRef

12. AndersonJM, Van ItallieCM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol1995;269(4 Pt 1):G467.

13. GumbinerB. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol1987;253(6 Pt 1):C749.

14. SchulzkeJD, GunzelD, JohnLJ, et al.Perspectives on tight junction research. Ann N Y Acad Sci2012;1257:1. CrossRef

15. VetranoS, RescignoM, CeraMR, et al.Unique role of junctional adhesion molecule‐a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology2008;135:173. CrossRef

16. LaukoetterMG, NavaP, LeeWY, et al.JAM‐A regulates permeability and inflammation in the intestine in vivo. J Exp Med2007;204:3067. CrossRef

17. UtechM, BruwerM, NusratA. Tight junctions and cell‐cell interactions. Methods Mol Biol2006;341:185.

18. ShenL. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci2012;1258:9. CrossRef

19. TurnerJR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol2009;9:799. CrossRef

20. Gonzalez‐MariscalL, BetanzosA, Avila‐FloresA. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol2000;11:315. CrossRef

21. BaldaMS, MatterK. Tight junctions and the regulation of gene expression. Biochim Biophys Acta2009;1788:761. CrossRef

22. CunninghamKE, TurnerJR. Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci2012;1258:34. CrossRef

23. TurnerJR, BlackED, WardJ, et al.Transepithelial resistance can be regulated by the intestinal brush‐border Na(+)/H(+) exchanger NHE3. Am J Physiol Cell Physiol2000;279:C1918.

24. TurnerJR. Show me the pathway! Regulation of paracellular permeability by Na(+)‐glucose cotransport. Adv Drug Deliv Rev2000;41:265. CrossRef

25. BerglundJJ, RieglerM, ZolotarevskyY, et al.Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)‐glucose cotransport. Am J Physiol Gastrointest Liver Physiol2001;281:G1487.

26. De LisleRC. Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res2014;355:131. CrossRef

27. de SouzaWF, BarbosaLA, LiuL, et al.Ouabain‐induced alterations of the apical junctional complex involve alpha1 and beta1 Na,K‐ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J Membr Biol2014;247:23. CrossRef

28. NighotPK, BlikslagerAT. Chloride channel ClC‐2 modulates tight junction barrier function via intracellular trafficking of occludin. Am J Physiol Cell Physiol2012;302:C178. CrossRef

29. NighotP, YoungK, NighotM, et al.Chloride channel ClC‐2 is a key factor in the development of DSS‐induced murine colitis. Inflamm Bowel Dis2013;19:2867. CrossRef

30. BlikslagerAT, RobertsMC, ArgenzioRA. Prostaglandin‐induced recovery of barrier function in porcine ileum is triggered by chloride secretion. Am J Physiol1999;276(1 Pt 1):G28.

31. SuzukiT. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci2013;70:631. CrossRef

32. CamilleriM, MadsenK, SpillerR, et al.Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil2012;24:503. CrossRef

33. BarreauF, HugotJ. Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol2014;17C:91. CrossRef

34. MadsenKL. Interactions between microbes and the gut epithelium. J Clin Gastroenterol2011;45(Suppl):S111. CrossRef

35. FasanoA, NataroJP. Intestinal epithelial tight junctions as targets for enteric bacteria‐derived toxins. Adv Drug Deliv Rev2004;56:795. CrossRef

36. GuttmanJA, FinlayBB. Tight junctions as targets of infectious agents. Biochim Biophys Acta2009;1788:832. CrossRef

37. GuttmanJA, LiY, WickhamME, et al.Attaching and effacing pathogen‐induced tight junction disruption in vivo. Cell Microbiol2006;8:634. CrossRef

38. BertelsenLS, PaesoldG, MarcusSL, et al.Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Physiol Cell Physiol2004;287:C939. CrossRef

39. BerkesJ, ViswanathanVK, SavkovicSD, et al.Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut2003;52:439. CrossRef

40. MarchettiG, TincatiC, SilvestriG. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev2013;26:2. CrossRef

41. CottonJA, BeattyJK, BuretAG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol2011;41:925. CrossRef

42. BergmannKR, LiuSX, TianR, et al.Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol2013;182:1595. CrossRef

43. MiyauchiE, O′CallaghanJ, ButtoLF, et al.Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol2012;303:G1029. CrossRef

44. Resta‐LenertS, BarrettKE. Probiotics and commensals reverse TNF‐alpha‐ and IFN‐gamma‐induced dysfunction in human intestinal epithelial cells. Gastroenterology2006;130:731. CrossRef

45. SandleGI, WillsNK, AllesW, et al.Electrophysiology of the human colon: evidence of segmental heterogeneity. Gut1986;27:999. CrossRef

46. BachmannO, SeidlerU. News from the end of the gut–how the highly segmental pattern of colonic HCO(3)(‐) transport relates to absorptive function and mucosal integrity. Biol Pharm Bull2011;34:794. CrossRef

47. KielaPR, GhishanFK. Ion transport in the intestine. Curr Opin Gastroenterol2009;25:87. CrossRef

48. KatoA, RomeroMF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol2011;73:261. CrossRef

49. CoonS, KekudaR, SahaP, et al.Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am J Physiol Cell Physiol2011;300:C496s. CrossRef

50. ZachosNC, KovbasnjukO, DonowitzM. Regulation of intestinal electroneutral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci2009;1165:240. CrossRef

51. MutchDM, AnderleP, FiauxM, et al.Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics2004;17:11. CrossRef

52. AnderleP, SengstagT, MutchDM, et al.Changes in the transcriptional profile of transporters in the intestine along the anterior‐posterior and crypt‐villus axes. BMC Genomics2005;6:69. CrossRef

53. MiddendorpS, SchneebergerK, WiegerinckCL, et al.Adult stem cells in the small intestine are intrinsically programmed with their location‐specific function. Stem Cells2014;●●:●●.

54. BosseT, PiaseckyjCM, BurghardE, et al.Gata4 is essential for the maintenance of jejunal‐ileal identities in the adult mouse small intestine. Mol Cell Biol2006;26:9060. CrossRef

55. GuptaIR, RyanAK. Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet2010;77:314. CrossRef

56. FujitaH, ChibaH, YokozakiH, et al.Differential expression and subcellular localization of claudin‐7, ‐8, ‐12, ‐13, and ‐15 along the mouse intestine. J Histochem Cytochem2006;54:933. CrossRef

57. HolmesJL, Van ItallieCM, RasmussenJE, et al.Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns2006;6:581. CrossRef

58. SnippertHJ, van der FlierLG, SatoT, et al.Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell2010;143:134. CrossRef

59. OuelletteAJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol2010;26:547. CrossRef

60. MerlinD, YueG, LencerWI, et al.Cryptdin‐3 induces novel apical conductance(s) in Cl‐ secretory, including cystic fibrosis, epithelia. Am J Physiol Cell Physiol2001;280:C296.

61. JohanssonME, SjovallH, HanssonGC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol2013;10:352. CrossRef

62. KovacsI, LudanyA, KoszegiT, et al.Substance P released from sensory nerve endings influences tear secretion and goblet cell function in the rat. Neuropeptides2005;39:395. CrossRef

63. GershonMD. 5‐Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes2013;20:14. CrossRef

64. RaybouldHE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci2010;153:41. CrossRef

65. GeibelJP. Secretion and absorption by colonic crypts. Annu Rev Physiol2005;67:471. CrossRef

66. JakabRL, CollacoAM, AmeenNA. Physiological relevance of cell‐specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt‐villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol2011;300:G82. CrossRef

67. BullenTF, ForrestS, CampbellF, et al.Characterization of epithelial cell shedding from human small intestine. Lab Invest2006;86:1052. CrossRef

68. SatoT, van EsJH, SnippertHJ, et al.Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature2011;469:415. CrossRef

69. HorvayK, AbudHE. Regulation of intestinal stem cells by Wnt and Notch signalling. Adv Exp Med Biol2013;786:175. CrossRef

70. van EsJH, HaegebarthA, KujalaP, et al.A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self‐renewal. Mol Cell Biol2012;32:1918. CrossRef

71. KorinekV, BarkerN, WillertK, et al.Two members of the Tcf family implicated in Wnt/beta‐catenin signaling during embryogenesis in the mouse. Mol Cell Biol1998;18:1248. CrossRef

72. HirataA, UtikalJ, YamashitaS, et al.Dose‐dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development2013;140:66. CrossRef

73. FreS, HuygheM, MourikisP, et al.Notch signals control the fate of immature progenitor cells in the intestine. Nature2005;435:964. CrossRef

74. PrestonGM, CarrollTP, GugginoWB, et al.Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science1992;256:385. CrossRef

75. LaforenzaU. Water channel proteins in the gastrointestinal tract. Mol Aspects Med2012;33:642. CrossRef

76. SilbersteinC, KierbelA, AmodeoG, et al.Functional characterization and localization of AQP3 in the human colon. Braz J Med Biol Res1999;32:1303. CrossRef

77. KoyamaY, YamamotoT, TaniT, et al.Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol1999;276(3 Pt 1):C621.

78. WangKS, MaT, FilizF, et al.Colon water transport in transgenic mice lacking aquaporin‐4 water channels. Am J Physiol Gastrointest Liver Physiol2000;279:G463.

79. YangB, SongY, ZhaoD, et al.Phenotype analysis of aquaporin‐8 null mice. Am J Physiol Cell Physiol2005;288:C1161. CrossRef

80. HartleyJL, ZachosNC, DawoodB, et al.Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology2010;138:2388, 98 e1‐2. CrossRef

81. GuttmanJA, SamjiFN, LiY, et al.Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol2007;9:131. CrossRef

82. LaforenzaU, MiceliE, GastaldiG, et al.Solute transporters and aquaporins are impaired in celiac disease. Biol Cell2010;102:457. CrossRef

83. WrightEM, LooDD, HirayamaBA. Biology of human sodium glucose transporters. Physiol Rev2011;91:733. CrossRef

84. LooDD, ZeuthenT, ChandyG, et al.Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A1996;93:13367. CrossRef

85. ZeuthenT, MeinildAK, KlaerkeDA, et al.Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell1997;89:307.

86. LooDD, HirayamaBA, MeinildAK, et al.Passive water and ion transport by cotransporters. J Physiol1999;518(Pt 1):195. CrossRef

87. LapointeJY, GagnonMP, GagnonDG, et al.Controversy regarding the secondary active water transport hypothesis. Biochem Cell Biol2002;80:525. CrossRef

88. LarsenEH, WillumsenNJ, MobjergN, et al.The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol (Oxf)2009;195:171. CrossRef

89. KaplanJH. Sodium ions and the sodium pump: transport and enzymatic activity. Am J Physiol1983;245:G327.

90. FullerPJ, VerityK. Colonic sodium‐potassium adenosine triphosphate subunit gene expression: ontogeny and regulation by adrenocortical steroids. Endocrinology1990;127:32. CrossRef

91. ChowDC, ForteJG. Functional significance of the beta‐subunit for heterodimeric P‐type ATPases. J Exp Biol1995;198(Pt 1):1.

92. LubarskiI, Pihakaski‐MaunsbachK, KarlishSJ, et al.Interaction with the Na,K‐ATPase and tissue distribution of FXYD5 (related to ion channel). J Biol Chem2005;280:37717. CrossRef

93. GeeringK. Function of FXYD proteins, regulators of Na, K‐ATPase. J Bioenerg Biomembr2005;37:387. CrossRef

94. GoldschmidtI, GrahammerF, WarthR, et al.Kidney and colon electrolyte transport in CHIF knockout mice. Cell Physiol Biochem2004;14:113. CrossRef

95. SweiryJH, BinderHJ. Active potassium absorption in rat distal colon. J Physiol1990;423:155. CrossRef

96. Del CastilloJR, RajendranVM, BinderHJ. Apical membrane localization of ouabain‐sensitive K(+)‐activated ATPase activities in rat distal colon. Am J Physiol1991;261(6 Pt 1):G1005.

97. BelisarioDC, RocafullMA, del CastilloJR. Purification and characterization of the ouabain‐sensitive H+/K+‐ATPase from guinea‐pig distal colon. Arch Biochem Biophys2010;496:21. CrossRef

98. ShaoJ, GumzML, CainBD, et al.Pharmacological profiles of the murine gastric and colonic H,K‐ATPases. Biochim Biophys Acta2010;1800:906. CrossRef

99. LeeJ, RajendranVM, MannAS, et al.Functional expression and segmental localization of rat colonic K‐adenosine triphosphatase. J Clin Invest1995;96:2002. CrossRef

100. CougnonM, PlanellesG, CrowsonMS, et al.The rat distal colon P‐ATPase alpha subunit encodes a ouabain‐sensitive H+, K+‐ATPase. J Biol Chem1996;271:7277. CrossRef

101. von EngelhardtW, BurmesterM, HansenK, et al.Effects of amiloride and ouabain on short‐chain fatty acid transport in guinea‐pig large intestine. J Physiol1993;460:455. CrossRef

102. AizmanRI, CelsiG, GrahnquistL, et al.Ontogeny of K+ transport in rat distal colon. Am J Physiol1996;271(2 Pt 1):G268.

103. SanganP, KollaSS, RajendranVM, et al.Colonic H‐K‐ATPase beta‐subunit: identification in apical membranes and regulation by dietary K depletion. Am J Physiol1999;276(2 Pt 1):C350.

104. CrowsonMS, ShullGE. Isolation and characterization of a cDNA encoding the putative distal colon H+,K(+)‐ATPase. Similarity of deduced amino acid sequence to gastric H+,K(+)‐ATPase and Na+,K(+)‐ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem1992;267:13740.

105. SanganP, ThevanantherS, SanganS, et al.Colonic H‐K‐ATPase alpha‐ and beta‐subunits express ouabain‐insensitive H‐K‐ATPase. Am J Physiol Cell Physiol2000;278:C182.

106. CodinaJ, Delmas‐MataJT, DuBoseTDJr. The alpha‐subunit of the colonic H+,K+‐ATPase assembles with beta1‐Na+,K+‐ATPase in kidney and distal colon. J Biol Chem1998;273:7894. CrossRef

107. HedigerMA, CoadyMJ, IkedaTS, et al.Expression cloning and cDNA sequencing of the Na+/glucose co‐transporter. Nature1987;330:379. CrossRef

108. WrightEM, HirayamaBA, LooDF. Active sugar transport in health and disease. J Intern Med2007;261:32. CrossRef

109. WrightEM, TurkE. The sodium/glucose cotransport family SLC5. Pflugers Arch2004;447:510. CrossRef

110. Panayotova‐HeiermannM, LooDD, KongCT, et al.Sugar binding to Na+/glucose cotransporters is determined by the carboxyl‐terminal half of the protein. J Biol Chem1996;271:10029. CrossRef

111. MartinMG, TurkE, LostaoMP, et al.Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose‐galactose malabsorption. Nat Genet1996;12:216. CrossRef

112. WrightEM, LooDD, TurkE, et al.Sodium cotransporters. Curr Opin Cell Biol1996;8:468. CrossRef

113. BachmannO, JuricM, SeidlerU, et al.Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf)2011;201:33. CrossRef

114. RomeroMF, ChenAP, ParkerMD, et al.The SLC4 family of bicarbonate (HCO(3)(‐)) transporters. Mol Aspects Med2013;34:159. CrossRef

115. ParkerMD, BoronWF. The divergence, actions, roles, and relatives of sodium‐coupled bicarbonate transporters. Physiol Rev2013;93:803. CrossRef

116. GawenisLR, BradfordEM, PrasadV, et al.Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3‐ cotransporter. J Biol Chem2007;282:9042. CrossRef

117. DorfmanR, LiW, SunL, et al.Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results. Hum Genet2009;126:763. CrossRef

118. BarmeyerC, YeJH, SorokaC, et al.Identification of functionally distinct Na‐HCO3 co‐transporters in colon. PLoS ONE2013;8:e62864. CrossRef

119. ChenM, PraetoriusJ, ZhengW, et al.The electroneutral Na(+):HCO(3)(‐) cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol2012;590(Pt 14):3317. CrossRef

120. SinghAK, XiaW, RiedererB, et al.Essential role of the electroneutral Na+‐HCO3‐ cotransporter NBCn1 in murine duodenal acid‐base balance and colonic mucus layer build‐up in vivo. J Physiol2013;591(Pt 8):2189. CrossRef

121. SmithDE, ClemenconB, HedigerMA. Proton‐coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med2013;34:323. CrossRef

122. LiangR, FeiYJ, PrasadPD, et al.Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem1995;270:6456. CrossRef

123. ThwaitesDT, AndersonCM. H+‐coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol2007;92:603. CrossRef

124. RitzhauptA, WoodIS, EllisA, et al.Identification of a monocarboxylate transporter isoform type 1 (MCT1) on the luminal membrane of human and pig colon. Biochem Soc Trans1998;26:S120. CrossRef

125. GarciaCK, GoldsteinJL, PathakRK, et al.Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell1994;76:865. CrossRef

126. KiratD, KatoS. Monocarboxylate transporter 1 (MCT1) mediates transport of short‐chain fatty acids in bovine caecum. Exp Physiol2006;91:835. CrossRef

127. DharmsathaphornK, MandelKG, MasuiH, et al.Vasoactive intestinal polypeptide‐induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl‐ cotransport system. J Clin Invest1985;75:462. CrossRef

128. RechkemmerG, HalmDR. Aldosterone stimulates K secretion across mammalian colon independent of Na absorption. Proc Natl Acad Sci U S A1989;86:397. CrossRef

129. D′AndreaL, LytleC, MatthewsJB, et al.Na:K:2Cl cotransporter (NKCC) of intestinal epithelial cells. Surface expression in response to cAMP. J Biol Chem1996;271:28969. CrossRef

130. HegdeRS, PalfreyHC. Ionic effects on bumetanide binding to the activated Na/K/2Cl cotransporter: selectivity and kinetic properties of ion binding sites. J Membr Biol1992;126:27. CrossRef

131. GimenezI. Molecular mechanisms and regulation of furosemide‐sensitive Na‐K‐Cl cotransporters. Curr Opin Nephrol Hypertens2006;15:517. CrossRef

132. ChangH, TashiroK, HiraiM, et al.Identification of a cDNA encoding a thiazide‐sensitive sodium‐chloride cotransporter from the human and its mRNA expression in various tissues. Biochem Biophys Res Commun1996;223:324. CrossRef

133. MoesAD, van der LubbeN, ZietseR, et al.The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch2014;466:107. CrossRef

134. BazziniC, VezzoliV, SironiC, et al.Thiazide‐sensitive NaCl‐cotransporter in the intestine: possible role of hydrochlorothiazide in the intestinal Ca2+ uptake. J Biol Chem2005;280:19902. CrossRef

135. MurerH, HopferU, KinneR. Sodium/proton antiport in brush‐border‐membrane vesicles isolated from rat small intestine and kidney. Biochem J1976;154:597. CrossRef

136. DudejaPK, FosterES, BrasitusTA, et al.antiporter of rat colonic basolateral membrane vesicles. Am J Physiol1989;257(4 Pt 1):G624.

137. RajendranVM, OesterlinM, BinderHJ. Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na‐H exchange and Na‐anion cotransport. J Clin Invest1991;88:1379. CrossRef

138. FusterDG, AlexanderRT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch2014;466:61. CrossRef

139. DonowitzM, Ming TseC, FusterD. SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med2013;34:236. CrossRef

140. TseCM, MaAI, YangVW, et al.Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J1991;10:1957.

141. YunCH, TseCM, NathSK, et al.Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol1995;269(1 Pt 1):G1. CrossRef

142. TseCM, BrantSR, WalkerMS, et al.Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney‐specific Na+/H+ exchanger isoform (NHE‐3). J Biol Chem1992;267:9340.

143. BooksteinC, DePaoliAM, XieY, et al.Na+/H+ exchangers, NHE‐1 and NHE‐3, of rat intestine. Expression and localization. J Clin Invest1994;93:106. CrossRef

144. SeidlerU, SinghAK, CinarA, et al.The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci2009;1165:249. CrossRef

145. LevineSA, NathSK, YunCH, et al.Separate C‐terminal domains of the epithelial specific brush border Na+/H+ exchanger isoform NHE3 are involved in stimulation and inhibition by protein kinases/growth factors. J Biol Chem1995;270:13716. CrossRef

146. WakabayashiS, IkedaT, NoelJ, et al.Cytoplasmic domain of the ubiquitous Na+/H+ exchanger NHE1 can confer Ca2+ responsiveness to the apical isoform NHE3. J Biol Chem1995;270:26460. CrossRef

147. ZachosNC, TseM, DonowitzM. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol2005;67:411. CrossRef

148. GensJS, DuH, TackettL, et al.Different ionic conditions prompt NHE2 and NHE3 translocation to the plasma membrane. Biochim Biophys Acta2007;1768:1023. CrossRef

149. YunCH, GurubhagavatulaS, LevineSA, et al.Glucocorticoid stimulation of ileal Na+ absorptive cell brush border Na+/H+ exchange and association with an increase in message for NHE‐3, an epithelial Na+/H+ exchanger isoform. J Biol Chem1993;268:206.

150. MaherMM, GontarekJD, BessRS, et al.The Na+/H+ exchange isoform NHE3 regulates basal canine ileal Na+ absorption in vivo. Gastroenterology1997;112:174. CrossRef

151. DonowitzM, De La HorraC, CalongeML, et al.In birds, NHE2 is major brush‐border Na+/H+ exchanger in colon and is increased by a low‐NaCl diet. Am J Physiol1998;274(6 Pt 2):R1659.

152. CermakR, LawnitzakC, ScharrerE. Influence of ammonia on sodium absorption in rat proximal colon. Pflugers Arch2000;440:619. CrossRef

153. SchultheisPJ, ClarkeLL, MenetonP, et al.Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest1998;101:1243. CrossRef

154. SchultheisPJ, ClarkeLL, MenetonP, et al.Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet1998;19:282. CrossRef

155. CabadoAG, YuFH, KapusA, et al.Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J Biol Chem1996;271:3590. CrossRef

156. RajendranVM, BinderHJ. Distribution and regulation of apical Cl/anion exchanges in surface and crypt cells of rat distal colon. Am J Physiol1999;276(1 Pt 1):G132.

157. VaandragerAB, De JongeHR. A sensitive technique for the determination of anion exchange activities in brush‐border membrane vesicles. Evidence for two exchangers with different affinities for HCO3‐ and SITS in rat intestinal epithelium. Biochim Biophys Acta1988;939:305. CrossRef

158. HoglundP, HailaS, SochaJ, et al.Mutations of the Down‐regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet1996;14:316. CrossRef

159. ByeonMK, WestermanMA, MaroulakouIG, et al.The down‐regulated in adenoma (DRA) gene encodes an intestine‐specific membrane glycoprotein. Oncogene1996;12:387.

160. XiaW, YuQ, RiedererB, et al.The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT‐1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch2013;●●:●●.

161. ByeonMK, FrankelA, PapasTS, et al.functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif1998;12:67. CrossRef

162. MelvinJE, ParkK, RichardsonL, et al.Mouse down‐regulated in adenoma (DRA) is an intestinal Cl(‐)/HCO(3)(‐) exchanger and is up‐regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem1999;274:22855. CrossRef

163. NorbisF, PeregoC, MarkovichD, et al.cDNA cloning of a rat small‐intestinal Na+/SO4(2‐) cotransporter. Pflugers Arch1994;428:217. CrossRef

164. AlperSL, RossmannH, WilhelmS, et al.Expression of AE2 anion exchanger in mouse intestine. Am J Physiol1999;277(2 Pt 1):G321.

165. AlrefaiWA, TyagiS, NazirTM, et al.Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim Biophys Acta2001;1511:17. CrossRef

166. GawenisLR, BradfordEM, AlperSL, et al.AE2 Cl‐/HCO3‐ exchanger is required for normal cAMP‐stimulated anion secretion in murine proximal colon. Am J Physiol Gastrointest Liver Physiol2010;298:G493. CrossRef

167. RajendranVM, BlackJ, ArditoTA, et al.Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol2000;279:G931.

168. XuJ, BaroneS, PetrovicS, et al.Identification of an apical Cl‐/HCO3‐ exchanger in gastric surface mucous and duodenal villus cells. Am J Physiol Gastrointest Liver Physiol2003;285:G1225. CrossRef

169. SimpsonJE, SchweinfestCW, ShullGE, et al.PAT‐1 (Slc26a6) is the predominant apical membrane Cl‐/HCO3‐ exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol2007;292:G1079. CrossRef

170. CollinsJF, BaiL, GhishanFK. The SLC20 family of proteins: dual functions as sodium‐phosphate cotransporters and viral receptors. Pflugers Arch2004;447:647. CrossRef

171. WagnerCA, HernandoN, ForsterIC, et al.The SLC34 family of sodium‐dependent phosphate transporters. Pflugers Arch2014;466:139. CrossRef

172. MarkovichD. Na+‐sulfate cotransporter SLC13A1. Pflugers Arch2014;466:131. CrossRef

173. KolekOI, HinesER, JonesMD, et al.1alpha,25‐Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal‐gastrointestinal‐skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol2005;289:G1036. CrossRef

174. GillenCM, BrillS, PayneJA, et al.Molecular cloning and functional expression of the K‐Cl cotransporter from rabbit, rat, and human. A new member of the cation‐chloride cotransporter family. J Biol Chem1996;271:16237. CrossRef

175. ReussL. Basolateral KCl co‐transport in a NaCl‐absorbing epithelium. Nature1983;305:723. CrossRef

176. RossierBC. The renal epithelial sodium channel: new insights in understanding hypertension. Adv Nephrol Necker Hosp1996;25:275.

177. SmithPR, BenosDJ. Epithelial Na+ channels. Annu Rev Physiol1991;53:509. CrossRef

178. CanessaCM, SchildL, BuellG, et al.Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature1994;367:463. CrossRef

179. FirsovD, SchildL, GautschiI, et al.Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A1996;93:15370. CrossRef

180. SnyderPM, PriceMP, McDonaldFJ, et al.Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell1995;83:969. CrossRef

181. GrunderS, FirsovD, ChangSS, et al.A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J1997;16:899. CrossRef

182. KabraR, KnightKK, ZhouR, et al.Nedd4‐2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem2008;283:6033. [Epub 2008/01/05]. CrossRef

183. KashlanOB, KleymanTR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res2012;318:1011. [Epub 2012/03/13]. CrossRef

184. ChenSY, BhargavaA, MastroberardinoL, et al.Epithelial sodium channel regulated by aldosterone‐induced protein sgk. Proc Natl Acad Sci U S A1999;96:2514. [Epub 1999/03/03]. CrossRef

185. SnyderPM, OlsonDR, ThomasBC. Serum and glucocorticoid‐regulated kinase modulates Nedd4‐2‐mediated inhibition of the epithelial Na+ channel. J Biol Chem2002;277:5. [Epub 2001/11/07]. CrossRef

186. SnyderPM, OlsonDR, KabraR, et al.cAMP and serum and glucocorticoid‐inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4‐2. J Biol Chem2004;279:45753. [Epub 2004/08/26]. CrossRef

187. McColeDF, RoglerG, VarkiN, et al.Epidermal growth factor partially restores colonic ion transport responses in mouse models of chronic colitis. Gastroenterology2005;129:591. CrossRef

188. RexhepajR, ArtuncF, GrahammerF, et al.SGK1 is not required for regulation of colonic ENaC activity. Pflugers Arch2006;453:97. CrossRef

189. MalsureS, WangQ, CharlesRP, et al.Colon‐Specific Deletion of Epithelial Sodium Channel Causes Sodium Loss and Aldosterone Resistance. J Am Soc Nephrol2014;●●:●●.

190. CoricT, HernandezN, Alvarez de la RosaD, et al.Expression of ENaC and serum‐ and glucocorticoid‐induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol2004;286:G663. CrossRef

191. RiordanJR, RommensJM, KeremB, et al.Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science1989;245:1066. [Epub 1989/09/08]. CrossRef

192. PoulsenJH, FischerH, IllekB, et al.Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A1994;91:5340. [Epub 1994/06/07]. CrossRef

193. BradburyNA, BridgesRJ. Role of membrane trafficking in plasma membrane solute transport. Am J Physiol1994;267(1 Pt 1):C1. [Epub 1994/07/01].

194. JovovB, IsmailovII, BerdievBK, et al.Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J Biol Chem1995;270:29194. [Epub 1995/12/08]. CrossRef

195. StuttsMJ, CanessaCM, OlsenJC, et al.CFTR as a cAMP‐dependent regulator of sodium channels. Science1995;269:847. [Epub 1995/08/11]. CrossRef

196. GadsbyDC, NairnAC. Regulation of CFTR channel gating. Trends Biochem Sci1994;19:513. [Epub 1994/11/01]. CrossRef

197. BerschneiderHM, KnowlesMR, AzizkhanRG, et al.Altered intestinal chloride transport in cystic fibrosis. FASEB J1988;2:2625. [Epub 1988/07/01].

198. WagnerJA, CozensAL, SchulmanH, et al.Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin‐dependent protein kinase. Nature1991;349:793. [Epub 1991/02/28]. CrossRef

199. KoEA, JinBJ, NamkungW, et al.Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut2013;●●:●●.

200. OusingsawatJ, MirzaM, TianY, et al.Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch2011;461:579. CrossRef

201. FerreraL, Zegarra‐MoranO, GaliettaLJ. Ca2+‐activated Cl‐ channels. Compr Physiol2011;1:2155.

202. NamkungW, PhuanPW, VerkmanAS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium‐activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem2011;286:2365. CrossRef

203. OusingsawatJ, MartinsJR, SchreiberR, et al.Loss of TMEM16A causes a defect in epithelial Ca2+‐dependent chloride transport. J Biol Chem2009;284:28698. CrossRef

204. SakamotoH, KawasakiM, UchidaS, et al.Identification of a new outwardly rectifying Cl‐ channel that belongs to a subfamily of the ClC Cl‐ channels. J Biol Chem1996;271:10210. [Epub 1996/04/26]. CrossRef

205. VandewalleA, CluzeaudF, PengKC, et al.Tissue distribution and subcellular localization of the ClC‐5 chloride channel in rat intestinal cells. Am J Physiol Cell Physiol2001;280:C373. [Epub 2001/02/24].

206. ThiemannA, GrunderS, PuschM, et al.A chloride channel widely expressed in epithelial and non‐epithelial cells. Nature1992;356:57. [Epub 1992/03/05]. CrossRef

207. NovarinoG, WeinertS, RickheitG, et al.Endosomal chloride‐proton exchange rather than chloride conductance is crucial for renal endocytosis. Science2010;328:1398. [Epub 2010/05/01]. CrossRef

208. LinZ, JinS, DuanX, et al.Chloride channel (Clc)‐5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3). J Biol Chem2011;286:22833. CrossRef

209. GyomoreyK, YegerH, AckerleyC, et al.Expression of the chloride channel ClC‐2 in the murine small intestine epithelium. Am J Physiol Cell Physiol2000;279:C1787. [Epub 2000/11/18].

210. CatalanMA, FloresCA, Gonzalez‐BegneM, et al.Severe defects in absorptive ion transport in distal colons of mice that lack ClC‐2 channels. Gastroenterology2012;142:346. CrossRef

211. JohansonJF, UenoR. Lubiprostone, a locally acting chloride channel activator, in adult patients with chronic constipation: a double‐blind, placebo‐controlled, dose‐ranging study to evaluate efficacy and safety. Aliment Pharmacol Ther2007;25:1351. [Epub 2007/05/19]. CrossRef

212. CuppolettiJ, MalinowskaDH, TewariKP, et al.SPI‐0211 activates T84 cell chloride transport and recombinant human ClC‐2 chloride currents. Am J Physiol Cell Physiol2004;287:C1173. [Epub 2004/06/24]. CrossRef

213. CuppolettiJ, ChakrabartiJ, TewariK, et al.Methadone but not morphine inhibits lubiprostone‐stimulated Cl‐ currents in T84 intestinal cells and recombinant human ClC‐2, but not CFTR Cl‐ currents. Cell Biochem Biophys2013;66:53. CrossRef

214. NorimatsuY, MoranAR, MacDonaldKD. Lubiprostone activates CFTR, but not ClC‐2, via the prostaglandin receptor (EP(4). Biochem Biophys Res Commun2012;426:374. CrossRef

215. SorensenMV, MatosJE, PraetoriusHA, et al.Colonic potassium handling. Pflugers Arch2010;459:645. CrossRef

216. WillsNK. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium. J Physiol1985;358:433. [Epub 1985/01/01]. CrossRef

217. LomaxRB, McNicholasCM, LombesM, et al.Aldosterone‐induced apical Na+ and K+ conductances are located predominantly in surface cells in rat distal colon. Am J Physiol1994;266(1 Pt 1):G71. [Epub 1994/01/01].

218. SorensenMV, StrandsbyAB, LarsenCK, et al.The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence. Pflugers Arch2011;462:745. CrossRef

219. SausbierM, MatosJE, SausbierU, et al.Distal colonic K(+) secretion occurs via BK channels. J Am Soc Nephrol2006;17:1275. [Epub 2006/03/31]. CrossRef

220. SandleGI, McNicholasCM, LomaxRB. Potassium channels in colonic crypts. Lancet1994;343:23. [Epub 1994/01/01]. CrossRef

221. LomaxRB, WarhurstG, SandleGI. Characteristics of two basolateral potassium channel populations in human colonic crypts. Gut1996;38:243. [Epub 1996/02/01]. CrossRef

222. Nanda KumarNS, SinghSK, RajendranVM. Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol2010;299:G707. CrossRef

223. FloresCA, MelvinJE, FigueroaCD, et al.Abolition of Ca2+‐mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+‐dependent K+ channel Kcnn4. J Physiol2007;583(Pt 2):705. [Epub 2007/06/23]. CrossRef

224. AlzamoraR, O′MahonyF, BustosV, et al.Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K(+) channels. J Physiol2011;589(Pt 21):5091. [Epub 2011/09/14]. CrossRef

225. NakajoK, KuboY. Nano‐environmental changes by KCNE proteins modify KCNQ channel function. Channels (Austin, Tex)2011;5:397. [Epub 2011/06/10]. CrossRef

226. PrestonP, WartoschL, GunzelD, et al.Disruption of the K+ channel beta‐subunit KCNE3 reveals an important role in intestinal and tracheal Cl‐ transport. J Biol Chem2010;285:7165. [Epub 2010/01/07]. CrossRef

227. BajwaPJ, AliouaA, LeeJW, et al.Fenofibrate inhibits intestinal Cl‐ secretion by blocking basolateral KCNQ1 K+ channels. Am J Physiol Gastrointest Liver Physiol2007;293:G1288. [Epub 2007/10/06]. CrossRef

228. KunzelmannK, MallM. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev2002;82:245. [Epub 2002/01/05]. CrossRef

229. FrizzellRA, FieldM, SchultzSG. Sodium‐coupled chloride transport by epithelial tissues. Am J Physiol1979;236:F1. [Epub 1979/01/01].

230. FosterES, BudingerME, HayslettJP, et al.Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption. J Clin Invest1986;77:228. [Epub 1986/01/01]. CrossRef

231. GradyGF, DuhamelRC, MooreEW. Active transport of sodium by human colon in vitro. Gastroenterology1970;59:583. [Epub 1970/10/01].

232. HubelKA, RenquistK, ShiraziS. Ion transport in human cecum, transverse colon, and sigmoid colon in vitro. Baseline and response to electrical stimulation of intrinsic nerves. Gastroenterology1987;92:501. [Epub 1987/02/01].

233. TurnamianSG, BinderHJ. Regulation of active sodium and potassium transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid receptors. J Clin Invest1989;84:1924. CrossRef

234. GreigE, SandleGI. Diarrhea in ulcerative colitis. The role of altered colonic sodium transport. Ann N Y Acad Sci2000;915:327. [Epub 2001/02/24]. CrossRef

235. FordtranJS. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest1975;55:728. [Epub 1975/04/01]. CrossRef

236. KimmichGA, RandlesJ. Sodium‐sugar coupling stoichiometry in chick intestinal cells. Am J Physiol1984;247(1 Pt 1):C74. [Epub 1984/07/01].

237. BugautM. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B1987;86:439. [Epub 1987/01/01]. CrossRef

238. RoedigerWE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology1982;83:424. [Epub 1982/08/01].

239. BinderHJ, MehtaP. Short‐chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology1989;96:989. [Epub 1989/04/01].

240. ChuS, MontroseMH. Extracellular pH regulation in microdomains of colonic crypts: effects of short‐chain fatty acids. Proc Natl Acad Sci U S A1995;92:3303. [Epub 1995/04/11]. CrossRef

241. ChuS, MontroseMH. Non‐ionic diffusion and carrier‐mediated transport drive extracellullar pH regulation of mouse colonic crypts. J Physiol1996;494(Pt 3):783. [Epub 1996/08/01]. CrossRef

242. MascoloN, RajendranVM, BinderHJ. Mechanism of short‐chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology1991;101:331. [Epub 1991/08/01].

243. HadjiagapiouC, SchmidtL, DudejaPK, et al.Mechanism(s) of butyrate transport in Caco‐2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol2000;279:G775. [Epub 2000/09/27].

244. TamaiI, TakanagaH, MaedaH, et al.Participation of a proton‐cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem Biophys Res Commun1995;214:482. [Epub 1995/09/14]. CrossRef

245. BinderHJ. Role of colonic short‐chain fatty acid transport in diarrhea. Annu Rev Physiol2010;72:297. CrossRef

246. GoncalvesP, AraujoJR, MartelF. Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. J Membr Biol2011;240:35. [Epub 2011/02/03]. CrossRef

247. MaouyoD, ChuS, MontroseMH. pH heterogeneity at intracellular and extracellular plasma membrane sites in HT29‐C1 cell monolayers. Am J Physiol Cell Physiol2000;278:C973. [Epub 2000/05/04].

248. ReynoldsDA, RajendranVM, BinderHJ. Bicarbonate‐stimulated [14C]butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology1993;105:725. [Epub 1993/09/01].

249. AgarwalR, AfzalpurkarR, FordtranJS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology1994;107:548. [Epub 1994/08/01].

250. KaunitzJD, SachsG. Identification of a vanadate‐sensitive potassium‐dependent proton pump from rabbit colon. J Biol Chem1986;261:14005.

251. SanganP, BrillSR, SanganS, et al.Basolateral K‐Cl cotransporter regulates colonic potassium absorption in potassium depletion. J Biol Chem2000;275:30813. [Epub 2000/07/06]. CrossRef

252. DietzJ, FieldM. Ion transport in rabbit ileal mucosa. IV. Bicarbonate secretion. Am J Physiol1973;225:858. [Epub 1973/10/01].

253. FlemstromG, GarnerA. Gastroduodenal HCO3(‐) transport: characteristics and proposed role in acidity regulation and mucosal protection. Am J Physiol1982;242:G183. [Epub 1982/03/01].

254. MandelKG, McRobertsJA, BeuerleinG, et al.Ba2+ inhibition of VIP‐ and A23187‐stimulated Cl‐ secretion by T84 cell monolayers. Am J Physiol1986;250(3 Pt 1):C486. [Epub 1986/03/01].

255. GustafssonJK, ErmundA, AmbortD, et al.Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med2012;209:1263. CrossRef

256. PraetoriusJ, HagerH, NielsenS, et al.Molecular and functional evidence for electrogenic and electroneutral Na(+)‐HCO(3)(‐) cotransporters in murine duodenum. Am J Physiol Gastrointest Liver Physiol2001;280:G332.

257. HubelKA. Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am J Physiol1967;213:1409. [Epub 1967/12/01].

258. HoganDL, CrombieDL, IsenbergJI, et al.CFTR mediates cAMP‐ and Ca2+‐activated duodenal epithelial HCO3‐ secretion. Am J Physiol1997;272(4 Pt 1):G872. [Epub 1997/04/01].

259. PrathaVS, HoganDL, MartenssonBA, et al.Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology2000;118:1051. [Epub 2000/06/02]. CrossRef

260. RoedigerWE, MooreA. Effect of short‐chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig Dis Sci1981;26:100. [Epub 1981/02/01]. CrossRef

261. TalbotC, LytleC. Segregation of Na/H exchanger‐3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol2010;299:G358. CrossRef

262. SchweinfestCW, SpyropoulosDD, HendersonKW, et al.slc26a3 (dra)‐deficient mice display chloride‐losing diarrhea, enhanced colonic proliferation, and distinct up‐regulation of ion transporters in the colon. J Biol Chem2006;281:37962. [Epub 2006/09/27]. CrossRef

263. EdmondsCJ, WillisCL. Aldosterone in colonic potassium adaptation in rats. J Endocrinol1988;117:379. [Epub 1988/06/01]. CrossRef

264. SinghSK, O′HaraB, TalukderJR, et al.Aldosterone induces active K(+) secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon. Am J Physiol Cell Physiol2012;302:C1353. CrossRef

265. HalmDR, RickR. Secretion of K and Cl across colonic epithelium: cellular localization using electron microprobe analysis. Am J Physiol1992;262(6 Pt 1):C1392. [Epub 1992/06/01].

266. LinleyJ, LoganathanA, KopanatiS, et al.Evidence that two distinct crypt cell types secrete chloride and potassium in human colon. Gut2014;63:472. CrossRef

267. KantheshBM, SandleGI, RajendranVM. Enhanced K(+) secretion in dextran sulfate‐induced colitis reflects upregulation of large conductance apical K(+) channels (BK; Kcnma1). Am J Physiol Cell Physiol2013;305:C972. CrossRef

268. KononowaN, DickenmannMJ, KimMJ. Severe hyperkalemia following colon diversion surgery in a patient undergoing chronic hemodialysis: a case report. J Med Case Rep2013;7:207. CrossRef

269. PoesenR, MeijersB, EvenepoelP. The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial2013;26:323. CrossRef

270. SweiryJH, BinderHJ. Characterization of aldosterone‐induced potassium secretion in rat distal colon. J Clin Invest1989;83:844. [Epub 1989/03/01]. CrossRef

271. SmithPL, McCabeRD. Mechanism and regulation of transcellular potassium transport by the colon. Am J Physiol1984;247(5 Pt 1):G445. [Epub 1984/11/01].

272. ZhangJ, HalmST, HalmDR. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol2012;303:G1322. CrossRef

273. HuottPA, LiuW, McRobertsJA, et al.Mechanism of action of Escherichia coli heat stable enterotoxin in a human colonic cell line. J Clin Invest1988;82:514. [Epub 1988/08/01]. CrossRef

274. GhanemE, RobayeB, LealT, et al.The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol2005;146:364. [Epub 2005/08/02]. CrossRef

275. MadaraJL, PatapoffTW, Gillece‐CastroB, et al.5′‐adenosine monophosphate is the neutrophil‐derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest1993;91:2320. [Epub 1993/05/01]. CrossRef

276. UribeJM, BarrettKE. Nonmitogenic actions of growth factors: an integrated view of their role in intestinal physiology and pathophysiology. Gastroenterology1997;112:255. [Epub 1997/01/01].

277. WarhurstG, BarbezatGO, HiggsNB, et al.Expression of somatostatin receptor genes and their role in inhibiting Cl‐ secretion in HT‐29cl.19A colonocytes. Am J Physiol1995;269(5 Pt 1):G729. [Epub 1995/11/01].

278. UribeJM, GelbmannCM, Traynor‐KaplanAE, et al.Epidermal growth factor inhibits Ca(2+)‐dependent Cl‐ transport in T84 human colonic epithelial cells. Am J Physiol1996;271(3 Pt 1):C914. [Epub 1996/09/01].

279. Opleta‐MadsenK, HardinJ, GallDG. Epidermal growth factor upregulates intestinal electrolyte and nutrient transport. Am J Physiol1991;260(6 Pt 1):G807. [Epub 1991/06/01].

280. DonowitzM, MontgomeryJL, WalkerMS, et al.Brush‐border tyrosine phosphorylation stimulates ileal neutral NaCl absorption and brush‐border Na(+)‐H+ exchange. Am J Physiol1994;266(4 Pt 1):G647. [Epub 1994/04/01].

281. JaneckiAJ, JaneckiM, AkhterS, et al.Basic fibroblast growth factor stimulates surface expression and activity of Na(+)/H(+) exchanger NHE3 via mechanism involving phosphatidylinositol 3‐kinase. J Biol Chem2000;275:8133. [Epub 2000/03/14]. CrossRef

282. ChangN, UribeJM, KeelySJ, et al.Insulin and IGF‐I inhibit calcium‐dependent chloride secretion by T84 human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol2001;281:G129.

283. HorisbergerJD, RossierBC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension1992;19:221. CrossRef

284. SnyderPM. Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology2005;146:5079. CrossRef

285. MrozMS, KeatingN, WardJB, et al.Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut2013;●●:●●.

286. MayolJM, Arbeo‐EscolarA, Alarma‐EstranyP, et al.Progesterone inhibits chloride transport in human intestinal epithelial cells. World J Surg2002;26:652. CrossRef

287. Saint‐CriqV, Rapetti‐MaussR, YusefYR, et al.Estrogen regulation of epithelial ion transport: Implications in health and disease. Steroids2012;77:918. CrossRef

288. SandleGI, McGloneF. Acute effects of dexamethasone on cation transport in colonic epithelium. Gut1987;28:701. [Epub 1987/06/01]. CrossRef

289. Matosin‐MatekaloM, MesoneroJE, DelezayO, et al.Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco‐2 cells. Biochem J1998;334(Pt 3):633. [Epub 1998/09/08]. CrossRef

290. WendlerA, BaldiE, HarveyBJ, et al.Position paper: rapid responses to steroids: current status and future prospects. Eur J Endocrinol2010;162:825. CrossRef

291. DonowitzM, WelshMJ. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol1986;48:135. [Epub 1986/01/01]. CrossRef

292. KimbergDV, FieldM, JohnsonJ, et al.Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J Clin Invest1971;50:1218. [Epub 1971/06/01]. CrossRef

293. FieldM, GrafLHJr, LairdWJ, et al.Heat‐stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A1978;75:2800. [Epub 1978/06/01]. CrossRef

294. Golin‐BiselloF, BradburyN, AmeenN. STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol2005;289:C708. [Epub 2005/05/06]. CrossRef

295. GrubbBR. Ion transport across the jejunum in normal and cystic fibrosis mice. Am J Physiol1995;268(3 Pt 1):G505. [Epub 1995/03/01].

296. YaoB, HoganDL, BukhaveK, et al.Bicarbonate transport by rabbit duodenum in vitro: effect of vasoactive intestinal polypeptide, prostaglandin E2, and cyclic adenosine monophosphate. Gastroenterology1993;104:732. [Epub 1993/03/01].

297. AllenA, FlemstromG. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol2005;288:C1. CrossRef

298. SchnizlerM, MastroberardinoL, ReifarthF, et al.cAMP sensitivity conferred to the epithelial Na+ channel by alpha‐subunit cloned from guinea‐pig colon. Pflugers Arch2000;439:579. CrossRef

299. MiesF, SprietC, HeliotL, et al.Epithelial Na+ channel stimulation by n‐3 fatty acids requires proximity to a membrane‐bound A‐kinase‐anchoring protein complexed with protein kinase A and phosphodiesterase. J Biol Chem2007;282:18339. [Epub 2007/05/05]. CrossRef

300. MuanprasatC, ChatsudthipongV. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem2013;5:781. CrossRef

301. CurrieMG, FokKF, KatoJ, et al.Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A1992;89:947. [Epub 1992/02/01]. CrossRef

302. ForteLRJr. Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther2004;104:137. [Epub 2004/11/03]. CrossRef

303. ChaoAC, de SauvageFJ, DongYJ, et al.Activation of intestinal CFTR Cl‐ channel by heat‐stable enterotoxin and guanylin via cAMP‐dependent protein kinase. EMBO J1994;13:1065.

304. SeidlerU, BlumensteinI, KretzA, et al.A functional CFTR protein is required for mouse intestinal cAMP‐, cGMP‐ and Ca(2+)‐dependent HCO3‐ secretion. J Physiol1997;505(Pt 2):411. CrossRef

305. QiuW, LeeB, LancasterM, et al.Cyclic nucleotide‐gated cation channels mediate sodium and calcium influx in rat colon. Am J Physiol Cell Physiol2000;278:C336.

306. XiaoQ, YuK, Perez‐CornejoP, et al.Voltage‐ and calcium‐dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A2011;108:8891. CrossRef

307. JungJ, NamJH, ParkHW, et al.Dynamic modulation of ANO1/TMEM16A HCO3(‐) permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A2013;110:360. CrossRef

308. JensenBS, StrobaekD, OlesenSP, et al.The Ca2+‐activated K+ channel of intermediate conductance: a molecular target for novel treatments?Curr Drug Targets2001;2:401. [Epub 2001/12/06]. CrossRef

309. DharmsathaphornK, CohnJ, BeuerleinG. Multiple calcium‐mediated effector mechanisms regulate chloride secretory responses in T84‐cells. Am J Physiol1989;256(6 Pt 1):C1224. [Epub 1989/06/01].

310. BarrettKE, KeelySJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol2000;62:535. [Epub 2000/06/09]. CrossRef

311. KhuranaS, NathSK, LevineSA, et al.Brush border phosphatidylinositol 3‐kinase mediates epidermal growth factor stimulation of intestinal NaCl absorption and Na+/H+ exchange. J Biol Chem1996;271:9919. [Epub 1996/04/26]. CrossRef

312. UribeJM, KeelySJ, Traynor‐KaplanAE, et al.Phosphatidylinositol 3‐kinase mediates the inhibitory effect of epidermal growth factor on calcium‐dependent chloride secretion. J Biol Chem1996;271:26588. [Epub 1996/10/25]. CrossRef

313. BarrettKE. Bowditch lecture. Integrated regulation of intestinal epithelial transport: intercellular and intracellular pathways. Am J Physiol1997;272(4 Pt 1):C1069. [Epub 1997/04/01].

314. DonowitzM, MohanS, ZhuCX, et al.NHE3 regulatory complexes. J Exp Biol2009;212(Pt 11):1638. CrossRef

315. KurashimaK, YuFH, CabadoAG, et al.Identification of sites required for down‐regulation of Na+/H+ exchanger NHE3 activity by cAMP‐dependent protein kinase. phosphorylation‐dependent and ‐independent mechanisms. J Biol Chem1997;272:28672. CrossRef

316. HoneggerKJ, CapuanoP, WinterC, et al.Regulation of sodium‐proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci U S A2006;103:803. CrossRef

317. WeinmanEJ, MinkoffC, ShenolikarS. Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am J Physiol Renal Physiol2000;279:F393.

318. ChaB, DonowitzM. The epithelial brush border Na+/H+ exchanger NHE3 associates with the actin cytoskeleton by binding to ezrin directly and via PDZ domain‐containing Na+/H+ exchanger regulatory factor (NHERF) proteins. Clin Exp Pharmacol Physiol2008;35:863. CrossRef

319. KimJH, Lee‐KwonW, ParkJB, et al.Ca(2+)‐dependent inhibition of Na+/H+ exchanger 3 (NHE3) requires an NHE3‐E3KARP‐alpha‐actinin‐4 complex for oligomerization and endocytosis. J Biol Chem2002;277:23714. CrossRef

320. GillRK, SaksenaS, TyagiS, et al.Serotonin inhibits Na+/H+ exchange activity via 5‐HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology2005;128:962. [Epub 2005/04/13]. CrossRef

321. DonowitzM, ChaB, ZachosNC, et al.NHERF family and NHE3 regulation. J Physiol2005;567(Pt 1):3. [Epub 2005/05/21]. CrossRef

322. ZizakM, ChenT, BartonicekD, et al.Calmodulin kinase II constitutively binds, phosphorylates, and inhibits brush border Na+/H+ exchanger 3 (NHE3) by a NHERF2 protein‐dependent process. J Biol Chem2012;287:13442. CrossRef

323. SultanA, LuoM, YuQ, et al.Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft‐ and the non‐raft brush border membrane fractions of NHE3. Cell Physiol Biochem2013;32:1386. CrossRef

324. TurnerJR, BlackED. NHE3‐dependent cytoplasmic alkalinization is triggered by Na(+)‐glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol2001;281:C1533.

325. HuZ, WangY, GrahamWV, et al.MAPKAPK‐2 is a critical signaling intermediate in NHE3 activation following Na+‐glucose cotransport. J Biol Chem2006;281:24247. CrossRef

326. LinR, MurtazinaR, ChaB, et al.D‐glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2‐dependent process. Gastroenterology2011;140:560. CrossRef

327. DonowitzM, JaneckiA, AkhterS, et al.Short‐term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts. Ann N Y Acad Sci2000;915:30. CrossRef

328. ChappeV, IrvineT, LiaoJ, et al.Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO J2005;24:2730. CrossRef

329. HuangP, TrotterK, BoucherRC, et al.PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am J Physiol Cell Physiol2000;278:C417. [Epub 2000/02/09].

330. VaandragerAB, BotAG, RuthP, et al.Differential role of cyclic GMP‐dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology2000;118:108. [Epub 1999/12/28]. CrossRef

331. LytleC, ForbushB3rd.Regulatory phosphorylation of the secretory Na‐K‐Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol1996;270(2 Pt 1):C437. [Epub 1996/02/11].

332. ReynoldsA, ParrisA, EvansLA, et al.Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol2007;582(Pt 2):507. [Epub 2007/05/05]. CrossRef

333. AlzamoraR, KingJDJr, HallowsKR. CFTR regulation by phosphorylation. Methods Mol Biol2011;741:471. CrossRef

334. ChappeV, HinksonDA, HowellLD, et al.Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A2004;101:390. CrossRef

335. SeavillekleinG, AmerN, EvagelidisA, et al.PKC phosphorylation modulates PKA‐dependent binding of the R domain to other domains of CFTR. Am J Physiol Cell Physiol2008;295:C1366. CrossRef

336. WarhurstG, HiggsNB, LeesM, et al.Activation of protein kinase C attenuates prostaglandin E2 responses in a colonic cell line. Am J Physiol1988;255(1 Pt 1):G27. [Epub 1988/07/01].

337. TangJ, BouyerP, MykoniatisA, et al.Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+‐K+‐2Cl‐ cotransporter NKCC1. J Biol Chem2010;285:34072. CrossRef

338. Rapetti‐MaussR, O′MahonyF, SepulvedaFV, et al.Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium. J Physiol2013;591(Pt 11):2813. CrossRef

339. Del CastilloIC, Fedor‐ChaikenM, SongJC, et al.Dynamic regulation of Na(+)‐K(+)‐2Cl(‐) cotransporter surface expression by PKC‐{epsilon} in Cl(‐)–secretory epithelia. Am J Physiol Cell Physiol2005;289:C1332. [Epub 2005/07/08]. CrossRef

340. LiX, ZhangH, CheongA, et al.Carbachol regulation of rabbit ileal brush border Na+‐H+ exchanger 3 (NHE3) occurs through changes in NHE3 trafficking and complex formation and is Src dependent. J Physiol2004;556(Pt 3):791. CrossRef

341. BilletA, LuoY, BalghiH, et al.Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem2013;288:21815. CrossRef

342. CesaroL, MarinO, VenerandoA, et al.Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine‐511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine‐512 and phenylalanine‐508. Amino Acids2013;45:1423. CrossRef

343. EatonDC, MalikB, BaoHF, et al.Regulation of epithelial sodium channel trafficking by ubiquitination. Proc Am Thorac Soc2010;7:54. CrossRef

344. MalikB, PriceSR, MitchWE, et al.Regulation of epithelial sodium channels by the ubiquitin‐proteasome proteolytic pathway. Am J Physiol Renal Physiol2006;290:F1285. [Epub 2006/05/10]. CrossRef

345. ZhouR, PatelSV, SnyderPM. Nedd4‐2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem2007;282:20207. [Epub 2007/05/16]. CrossRef

346. ButterworthMB, EdingerRS, JohnsonJP, et al.Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol2005;125:81. [Epub 2004/12/30]. CrossRef

347. FisherRS, GrilloFG, Sariban‐SohrabyS. Brefeldin A inhibition of apical Na+ channels in epithelia. Am J Physiol1996;270(1 Pt 1):C138. [Epub 1996/01/01].

348. BhallaV, SoundararajanR, PaoAC, et al.Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol2006;291:F714. [Epub 2006/05/25]. CrossRef

349. ChengJ, GugginoW. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6. PLoS ONE2013;8:e68001. CrossRef

350. RotinD, StaubO. Role of the ubiquitin system in regulating ion transport. Pflugers Arch2011;461:1. CrossRef

351. AlzamoraR, GongF, RondaninoC, et al.AMP‐activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4‐2 in renal epithelial cells. Am J Physiol Renal Physiol2010;299:F1308. CrossRef

352. LecuonaE, SunH, VohwinkelC, et al.Ubiquitination participates in the lysosomal degradation of Na,K‐ATPase in steady‐state conditions. Am J Respir Cell Mol Biol2009;41:671. CrossRef

353. OhtaA, SchumacherFR, MehellouY, et al.The CUL3‐KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease‐causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J2013;451:111. CrossRef

354. YangL, WangY, ChenP, et al.Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is required for the estradiol‐dependent increase of phosphatase and tensin homolog (PTEN) protein expression. Endocrinology2011;152:4537. CrossRef

355. AmashehS, EppleHJ, MankertzJ, et al.Differential regulation of ENaC by aldosterone in rat early and late distal colon. Ann N Y Acad Sci2000;915:92. CrossRef

356. CafferataEG, GuerricoAM, PivettaOH, et al.NF‐kappaB activation is involved in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) by interleukin‐1beta. J Biol Chem2001;276:15441. CrossRef

357. O′MahonyF, BarrettKE, KeelySJ. Epidermal growth factor chronically enhances colonic epithelial secretory capacity by upregulating NKCC1 expression. Gastroenterology2006;130:A372.

358. MrozMS, KeelySJ. Epidermal growth factor chronically upregulates Ca(2+)‐dependent Cl(‐) conductance and TMEM16A expression in intestinal epithelial cells. J Physiol2012;590(Pt 8):1907. CrossRef

359. ZhengW, KuhlickeJ, JackelK, et al.Hypoxia inducible factor‐1 (HIF‐1)‐mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J2009;23:204. CrossRef

360. MalakootiJ, SaksenaS, GillRK, et al.Transcriptional regulation of the intestinal luminal Na(+) and Cl(‐) transporters. Biochem J2011;435:313. CrossRef

361. KerschnerJL, HarrisA. Transcriptional networks driving enhancer function in the CFTR gene. Biochem J2012;446:203. CrossRef

362. TaylorCT, ColganSP. Hypoxia and gastrointestinal disease. J Mol Med2007;85:1295. CrossRef

363. IblaJC, KhouryJ, KongT, et al.Transcriptional repression of Na‐K‐2Cl cotransporter NKCC1 by hypoxia‐inducible factor‐1. Am J Physiol Cell Physiol2006;291:C282. [Epub 2006/03/31]. CrossRef

364. BartoszewskiR, RabA, TwittyG, et al.The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem2008;283:12154. CrossRef

365. SelvakumarP, OwensTA, DavidJM, et al.Epigenetic silencing of Na,K‐ATPase beta subunit gene by methylation in clear cell renal cell carcinoma. Epigenetics2014;9:●●. CrossRef

366. LeeHA, HongSH, KimJW, et al.Possible involvement of DNA methylation in NKCC1 gene expression during postnatal development and in response to ischemia. J Neurochem2010;114:520. CrossRef

367. TumerE, BroerA, BalkrishnaS, et al.Enterocyte‐specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem2013;288:33813. CrossRef

368. IkehataM, UedaK, IwakawaS. Different involvement of DNA methylation and histone deacetylation in the expression of solute‐carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull2012;35:301. CrossRef

369. BartelDP. MicroRNAs: target recognition and regulatory functions. Cell2009;136:215. CrossRef

370. OglesbyIK, ChotirmallSH, McElvaneyNG, et al.Regulation of cystic fibrosis transmembrane conductance regulator by microRNA‐145, ‐223, and ‐494 is altered in DeltaF508 cystic fibrosis airway epithelium. J Immunol2013;190:3354. CrossRef

371. RamachandranS, KarpPH, OsterhausSR, et al.Post‐transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol2013;49:544. CrossRef

372. MladinovD, LiuY, MattsonDL, et al.MicroRNAs contribute to the maintenance of cell‐type‐specific physiological characteristics: miR‐192 targets Na+/K+‐ATPase beta1. Nucleic Acids Res2013;41:1273. CrossRef

373. Tamarapu ParthasarathyP, GalamL, HuynhB, et al.MicroRNA 16 modulates epithelial sodium channel in human alveolar epithelial cells. Biochem Biophys Res Commun2012;426:203. CrossRef

374. VajanaphanichM, SchultzC, TsienRY, et al.Cross‐talk between calcium and cAMP‐dependent intracellular signaling pathways. Implications for synergistic secretion in T84 colonic epithelial cells and rat pancreatic acinar cells. J Clin Invest1995;96:386. [Epub 1995/07/01]. CrossRef

375. HoqueKM, WoodwardOM, van RossumDB, et al.Epac1 mediates protein kinase A‐independent mechanism of forskolin‐activated intestinal chloride secretion. J Gen Physiol2010;135:43. CrossRef

376. KunzelmannK, MehtaA. CFTR: a hub for kinases and crosstalk of cAMP and Ca2. FEBS J2013;280:4417. [Epub 2013/07/31]. CrossRef

377. KeelySJ, UribeJM, BarrettKE. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen‐activated protein kinase in T84 cells. Implications for carbachol‐stimulated chloride secretion. J Biol Chem1998;273:27111. CrossRef

378. KeelySJ, BarrettKE. p38 mitogen‐activated protein kinase inhibits calcium‐dependent chloride secretion in T84 colonic epithelial cells. Am J Physiol Cell Physiol2003;284:C339. CrossRef

379. DonnellanF, KeatingN, GeogheganP, et al.JNK mitogen‐activated protein kinase limits calcium‐dependent chloride secretion across colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol2010;298:G37. CrossRef

380. BertelsenLS, BarrettKE, KeelySJ. Gs protein‐coupled receptor agonists induce transactivation of the epidermal growth factor receptor in T84 cells: implications for epithelial secretory responses. J Biol Chem2004;279:6271. CrossRef

381. CarraGE, IbanezJE, SaraviFD. Electrogenic transport, oxygen consumption, and sensitivity to acute hypoxia of human colonic epithelium. Int J Colorectal Dis2011;26:1205. CrossRef

382. SotakM, PolidarovaL, MusilkovaJ, et al.Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol2011;301:G1066. CrossRef

383. RaybouldHE, CookeHJ, ChristofiFL. Sensory mechanisms: transmitters, modulators and reflexes. Neurogastroenterol Motil2004;16(Suppl 1):60. [Epub 2004/04/07]. CrossRef

384. KeatingN, MrozMS, ScharlMM, et al.Physiological concentrations of bile acids down‐regulate agonist induced secretion in colonic epithelial cells. J Cell Mol Med2009;13(8B):2293. CrossRef

385. JohnstonI, NolanJ, PattniSS, et al.New insights into bile acid malabsorption. Curr Gastroenterol Rep2011;13:418. CrossRef

386. CamilleriM. Advances in understanding of bile acid diarrhea. Expert Rev Gastroenterol Hepatol2014;8:49. CrossRef

387. KeelySJ, ScharlMM, BertelsenLS, et al.Bile acid‐induced secretion in polarized monolayers of T84 colonic epithelial cells: structure‐activity relationships. Am J Physiol Gastrointest Liver Physiol2007;292:G290. CrossRef

388. JonesML, MartoniCJ, GanopolskyJG, et al.The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther2014;14:467. CrossRef

389. MatthewsJB, HassanI, MengS, et al.Na‐K‐2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl‐ secretory capacity by butyrate. J Clin Invest1998;101:2072. [Epub 1998/05/29]. CrossRef

390. ZeissigS, FrommA, MankertzJ, et al.Butyrate induces intestinal sodium absorption via Sp3‐mediated transcriptional up‐regulation of epithelial sodium channels. Gastroenterology2007;132:236. [Epub 2007/01/24]. CrossRef

391. KopicS, GeibelJP. Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins2010;2:2132. CrossRef

392. SandleGI. Infective and inflammatory diarrhoea: mechanisms and opportunities for novel therapies. Curr Opin Pharmacol2011;11:634. CrossRef

393. MarchellettaRR, GareauMG, McColeDF, et al.Altered Expression and Localization of Ion Transporters Contribute to Diarrhea in Mice With Salmonella‐Induced Enteritis. Gastroenterology2013;145:1358. CrossRef

394. BrownEM, SadaranganiM, FinlayBB. The role of the immune system in governing host‐microbe interactions in the intestine. Nat Immunol2013;14:660. CrossRef

395. CamilleriM, NullensS, NelsenT. Enteroendocrine and neuronal mechanisms in pathophysiology of acute infectious diarrhea. Dig Dis Sci2012;57:19. CrossRef

396. AlbigerB, DahlbergS, Henriques‐NormarkB, et al.Role of the innate immune system in host defence against bacterial infections: focus on the Toll‐like receptors. J Intern Med2007;261:511. CrossRef

397. SpitzerMD. Viral causes of diarrhea. Pediatr Rev2002;23:257. CrossRef

398. PierceKK, KirkpatrickBD. Update on human infections caused by intestinal protozoa. Curr Opin Gastroenterol2009;25:12. CrossRef

399. AlexanderAN, CareyHV. Involvement of PI 3‐kinase in IGF‐I stimulation of jejunal Na+‐K+‐ATPase activity and nutrient absorption. Am J Physiol Gastrointest Liver Physiol2001;280:G222.

400. WardJB, MrozMS, KeelySJ. The bile acid receptor, TGR5, regulates basal and cholinergic‐induced secretory responses in rat colon. Neurogastroenterol Motil2013;25:708. CrossRef

401. KeatingN, KeelySJ. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep2009;11:375. CrossRef

402. WinterDC, SchneiderMF, O'SullivanGC, et al.Rapid effects of aldosterone on sodium‐hydrogen exchange in isolated colonic crypts. J Membr Biol1999;170:17. [Epub 1999/07/10]. CrossRef

403. MaguireD, MacNamaraB, CuffeJE, et al.Rapid responses to aldosterone in human distal colon. Steroids1999;64:51. [Epub 1999/05/14]. CrossRef

404. ChowJY, CarlstromK, BarrettKE. Growth hormone reduces chloride secretion in human colonic epithelial cells via EGF receptor and extracellular regulated kinase. Gastroenterology2003;125:1114. [Epub 2003/10/01]. CrossRef

405. CharoenphandhuN, LimlomwongseL, KrishnamraN. Prolactin directly enhanced Na+/K+‐ and Ca2+‐ATPase activities in the duodenum of female rats. Can J Physiol Pharmacol2006;84:555. [Epub 2006/08/12]. CrossRef

406. BowleyKA, MortonMJ, HunterM, et al.Non‐genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells. Gut2003;52:854. [Epub 2003/05/13]. CrossRef

407. SantaolallaR, AbreuMT. Innate immunity in the small intestine. Curr Opin Gastroenterol2012;28:124. CrossRef

408. PottJ, HornefM. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep2012;13:684. CrossRef

409. PerdueMH, McKayDM. Integrative immunophysiology in the intestinal mucosa. Am J Physiol1994;267(2 Pt 1):G151. [Epub 1994/08/01].

410. BeunkL, VerwoerdA, van OverveldFJ, et al.Role of mast cells in mucosal diseases: current concepts and strategies for treatment. Expert Rev Clin Immunol2013;9:53. CrossRef

411. De WinterBY, van den WijngaardRM, de JongeWJ. Intestinal mast cells in gut inflammation and motility disturbances. Biochim Biophys Acta2012;1822:66. CrossRef

412. BarrettKE, MetcalfeDD. The mucosal mast cell and its role in gastrointestinal allergic diseases. Clin Rev Allergy1984;2:39. [Epub 1984/02/01].

413. YuLC, PerdueMH. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev2001;179:61. CrossRef

414. Van NassauwL, AdriaensenD, TimmermansJP. The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Auton Neurosci2007;133:91. CrossRef

415. BerinMC, McKayDM, PerdueMH. Immune‐epithelial interactions in host defense. Am J Trop Med Hyg1999;60(4 Suppl):16.

416. PerdueMH, MassonS, WershilBK, et al.Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell‐deficient W/Wv mice by bone marrow transplantation. J Clin Invest1991;87:687. [Epub 1991/02/01]. CrossRef

417. GelbmannCM, SchteingartCD, ThompsonSM, et al.Mast cells and histamine contribute to bile acid‐stimulated secretion in the mouse colon. J Clin Invest1995;95:2831. [Epub 1995/06/01]. CrossRef

418. PothoulakisC, LamontJT. Microbes and microbial toxins: paradigms for microbial‐mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am J Physiol Gastrointest Liver Physiol2001;280:G178. [Epub 2001/02/24].

419. FarhadiA, ForsythC, BananA, et al.Evidence for non‐chemical, non‐electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry2007;71:142. CrossRef

420. KonturekPC, BrzozowskiT, KonturekSJ. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol2011;62:591.

421. PowellDW, MifflinRC, ValentichJD, et al.Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol1999;277(1 Pt 1):C1. [Epub 1999/07/17]. CrossRef

422. HinterleitnerTA, SaadaJI, BerschneiderHM, et al.IL‐1 stimulates intestinal myofibroblast COX gene expression and augments activation of Cl‐ secretion in T84 cells. Am J Physiol1996;271(4 Pt 1):C1262. [Epub 1996/10/01].

423. CastellsM. Mast cell mediators in allergic inflammation and mastocytosis. Immunol Allergy Clin North Am2006;26:465. CrossRef

424. StackWA, KeelySJ, O'DonoghueDP, et al.Immune regulation of human colonic electrolyte transport in vitro. Gut1995;36:395. CrossRef

425. SkellyMM, O'DonoghueDP, BairdAW. Oxygen metabolites in immune‐ stimulated ion transport in rat colon: modulation by taurine. Digestion2001;63:124. CrossRef

426. BarrettTA, MuschMW, ChangEB. Chemotactic peptide effects on intestinal electrolyte transport. Am J Physiol1990;259(6 Pt 1):G947. [Epub 1990/12/01].

427. GaginellaTS, KachurJF, TamaiH, et al.Reactive oxygen and nitrogen metabolites as mediators of secretory diarrhea. Gastroenterology1995;109:2019. [Epub 1995/12/01]. CrossRef

428. ChinAC, ParkosCA. Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking. Ann N Y Acad Sci2006;1072:276. [Epub 2006/10/24]. CrossRef

429. RossiO, KarczewskiJ, StolteEH, et al.Vectorial secretion of interleukin‐8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1. BMC Res Notes2013;6:431. [Epub 2013/10/30]. CrossRef

430. TurnerJR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol2006;169:1901. CrossRef

431. MuschMW, ClarkeLL, MamahD, et al.T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+‐ATPase. J Clin Invest2002;110:1739. [Epub 2002/12/05]. CrossRef

432. McKayDM, CroitoruK, PerdueMH. T cell‐monocyte interactions regulate epithelial physiology in a coculture model of inflammation. Am J Physiol1996;270(2 Pt 1):C418. [Epub 1996/02/01].

433. SuenaertP, MaertenP, Van AsscheG, et al.Effects of T cell‐induced colonic inflammation on epithelial barrier function. Inflamm Bowel Dis2010;16:1322. CrossRef

434. SuL, ShenL, ClayburghDR, et al.Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology2009;136:551. CrossRef

435. RochaF, MuschMW, LishanskiyL, et al.IFN‐gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco‐2/bbe cells. Am J Physiol Cell Physiol2001;280:C1224. [Epub 2001/04/05].

436. QiuY, YangH. Effects of intraepithelial lymphocyte‐derived cytokines on intestinal mucosal barrier function. J Interferon Cytokine Res2013;33:551. CrossRef

437. Inagaki‐OharaK, DewiFN, HisaedaH, et al.Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun2006;74:5292. [Epub 2006/08/24]. CrossRef

438. OuelletteAJ. Defensin‐mediated innate immunity in the small intestine. Best Pract Res Clin Anaesthesiol2004;18:405. [Epub 2004/05/05].

439. MastroianniJR, OuelletteAJ. Alpha‐defensins in enteric innate immunity: functional Paneth cell alpha‐defensins in mouse colonic lumen. J Biol Chem2009;284:27848. CrossRef

440. GotoY, IvanovII. Intestinal epithelial cells as mediators of the commensal‐host immune crosstalk. Immunol Cell Biol2013;91:204. CrossRef

441. ShaleM, GhoshS. How intestinal epithelial cells tolerise dendritic cells and its relevance to inflammatory bowel disease. Gut2009;58:1291. CrossRef

442. CannyG, SwidsinskiA, McCormickBA. Interactions of intestinal epithelial cells with bacteria and immune cells: methods to characterize microflora and functional consequences. Methods Mol Biol2006;341:17.

443. BerinMC, SampsonHA. Mucosal immunology of food allergy. Curr Biol2013;23:R389. CrossRef

444. ShibaharaT, MiyazakiK, SatoD, et al.Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol2005;40:878. [Epub 2005/10/08]. CrossRef

445. EckmannL, KagnoffMF. Intestinal mucosal responses to microbial infection. Springer Semin Immunopathol2005;27:181. CrossRef

446. OuG, BaranovV, LundmarkE, et al.Contribution of intestinal epithelial cells to innate immunity of the human gut–studies on polarized monolayers of colon carcinoma cells. Scand J Immunol2009;69:150. CrossRef

447. PowellDW, PinchukIV, SaadaJI, et al.Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol2011;73:213. CrossRef

448. BlumeED, TaylorCT, LennonPF, et al.Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6‐Keto‐PGF1alpha is an epithelial secretagogue. J Clin Invest1998;102:1161. [Epub 1998/09/17]. CrossRef

449. SharkeyKA, SavidgeTC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci2014;181:94. CrossRef

450. SchemannM, CamilleriM. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology2013;144:698. CrossRef

451. WangYZ, CookeHJ. H2 receptors mediate cyclical chloride secretion in guinea pig distal colon. Am J Physiol1990;258(6 Pt 1):G887. [Epub 1990/06/01].

452. BunnettNW. Neuro‐humoral Signalling by Bile Acids in the Gastrointestinal Tract. J Physiol2014;●●:●●.

453. CoxHM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci2007;133:76. CrossRef

454. FoongJP, ParryLJ, BornsteinJC. Activation of neuronal SST(1) and SST(2) receptors decreases neurogenic secretion in the guinea‐pig jejunum. Neurogastroenterol Motil2010;22:1209, e317. CrossRef

455. BurnstockG. Cotransmission in the autonomic nervous system. Handb Clin Neurol2013;●●:23. CrossRef

456. HoganDL, YaoB, SteinbachJH, et al.The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion. Gastroenterology1993;105:410. [Epub 1993/08/01].

457. HayashiH, SuzukiT, YamamotoT, et al.Cholinergic inhibition of electrogenic sodium absorption in the guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol2003;284:G617. CrossRef

458. KuwaharaA. Radowicz‐Cooke HJ. Epithelial transport in guinea‐pig proximal colon: influence of enteric neurones. J Physiol1988;395:271. [Epub 1988/01/01]. CrossRef

459. XueJ, AskwithC, JavedNH, et al.Autonomic nervous system and secretion across the intestinal mucosal surface. Auton Neurosci2007;133:55. CrossRef

460. RaybouldHE. Nutrient sensing in the gastrointestinal tract: possible role for nutrient transporters. J Physiol Biochem2008;64:349. CrossRef

461. WoodJD. Enteric nervous system: sensory physiology, diarrhea and constipation. Curr Opin Gastroenterol2010;26:102. CrossRef

462. HerediaDJ, DicksonEJ, BayguinovPO, et al.Localized release of serotonin (5‐hydroxytryptamine) by a fecal pellet regulates migrating motor complexes in murine colon. Gastroenterology2009;136:1328. CrossRef

463. CookeHJ, SidhuM, WangYZ. 5‐HT activates neural reflexes regulating secretion in the guinea‐pig colon. Neurogastroenterol Motil1997;9:181. CrossRef

464. LundgrenO, PeregrinAT, PerssonK, et al.Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science2000;287:491. [Epub 2000/01/22]. CrossRef

465. AlemiF, PooleDP, ChiuJ, et al.The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology2013;144:145. CrossRef

466. KonturekSJ, KonturekJW, PawlikT, et al.Brain‐gut axis and its role in the control of food intake. J Physiol Pharmacol2004;55(1 Pt 2):137.

467. SoderholmJD, PerdueMH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol2001;280:G7. [Epub 2000/12/21].

468. StasiC, RosselliM, BelliniM, et al.Altered neuro‐endocrine‐immune pathways in the irritable bowel syndrome: the top‐down and the bottom‐up model. J Gastroenterol2012;47:1177. CrossRef

469. EklundS, BrunssonI, JodalM, et al.Changes in cyclic 3′5′‐adenosine monophosphate tissue concentration and net fluid transport in the cat's small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide and 5‐hydroxytryptamine. Acta Physiol Scand1987;129:115. [Epub 1987/01/01]. CrossRef

470. HubelKA. Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol1985;248(3 Pt 1):G261. [Epub 1985/03/01].

471. WoodJD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology2004;127:635. [Epub 2004/08/10]. CrossRef

472. CastroGA, ArntzenCJ. Immunophysiology of the gut: a research frontier for integrative studies of the common mucosal immune system. Am J Physiol1993;265(4 Pt 1):G599. [Epub 1993/10/01].

473. TillischK, MayerEA, LabusJS, et al.Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut2005;54:1396. CrossRef

474. BonazBL, BernsteinCN. Brain‐gut interactions in inflammatory bowel disease. Gastroenterology2013;144:36. CrossRef

475. TaylorCT, KeelySJ. The autonomic nervous system and inflammatory bowel disease. Auton Neurosci2007;133:104. [Epub 2007/01/20]. CrossRef

476. YajimaT, InoueR, MatsumotoM, et al.Non‐neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J Physiol2011;589(Pt 4):953. CrossRef

477. BaderS, KleinJ, DienerM. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate‐induced release of acetylcholine in colon epithelium. Eur J Pharmacol2014;●●:●●.

478. KeelySJ. Epithelial acetylcholine–a new paradigm for cholinergic regulation of intestinal fluid and electrolyte transport. J Physiol2011;589(Pt 4):771. CrossRef

479. WlodarskaM, FinlayBB. Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol2010;3:100. CrossRef

480. KaiserP, HardtWD. Salmonella typhimurium diarrhea: switching the mucosal epithelium from homeostasis to defense. Curr Opin Immunol2011;23:456. CrossRef

481. JonesRM, LuoL, ArditaCS, et al.Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox‐mediated generation of reactive oxygen species. EMBO J2013;32:3017. CrossRef

482. WellsJM, RossiO, MeijerinkM, et al.Epithelial crosstalk at the microbiota‐mucosal interface. Proc Natl Acad Sci U S A2011;108(Suppl 1):4607. CrossRef

483. RahejaG, SinghV, MaK, et al.Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol2010;298:G395. CrossRef

484. TomasJ, ReygnerJ, MayeurC, et al.Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state. ISME J2014;●●:●●.

485. UlluwishewaD, AndersonRC, McNabbWC, et al.Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr2011;141:769. CrossRef

486. Resta‐LenertS, BarrettKE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut2003;52:988. CrossRef

487. LomasneyKW, HylandNP. The application of Ussing chambers for determining the impact of microbes and probiotics on intestinal ion transport. Can J Physiol Pharmacol2013;91:663. CrossRef

488. SaulnierDM, RingelY, HeymanMB, et al.The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes2013;4:17. CrossRef

489. NeishAS. Mucosal immunity and the microbiome. Ann Am Thorac Soc2014;11(Suppl 1):S28. CrossRef

490. LarmonierCB, LaubitzD, HillFM, et al.Reduced colonic microbial diversity is associated with colitis in NHE3‐deficient mice. Am J Physiol Gastrointest Liver Physiol2013;305:G667. CrossRef

491. VitettaL, BriskeyD, AlfordH, et al.Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology2014;●●:●●.

492. ShanahanF, QuigleyEM. Manipulation of the Microbiota for Treatment of IBS and IBD‐Challenges and Controversies. Gastroenterology2014;●●:●●.

493. WalshCJ, GuinaneCM, O'ToolePW, et al.Beneficial modulation of the gut microbiota. FEBS Lett2014;●●:●●.

494. LomasneyKW, CryanJF, HylandNP. Converging effects of a Bifidobacterium and Lactobacillus probiotic strain on mouse intestinal physiology. Am J Physiol Gastrointest Liver Physiol2014;307:G241. CrossRef

495. MajorG, SpillerR. Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Curr Opin Endocrinol Diabetes Obes2014;21:15. CrossRef

496. TuohyKM, FavaF, ViolaR. 'The way to a man's heart is through his gut microbiota′– dietary pro‐ and prebiotics for the management of cardiovascular risk. Proc Nutr Soc2014;●●:1.

497. DelzenneNM, NeyrinckAM, BackhedF, et al.Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol2011;7:639. CrossRef

498. BoernerBP, SarvetnickNE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci2011;1243:103. CrossRef

499. CryanJF, DinanTG. Mind‐altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci2012;13:701. CrossRef

500. SmithC, BerzinsK, RodriguesDM, et al.Probiotics Can Normalize the Gut‐Brain Axis in Immunodeficient Mice. Gastroenterology2013;144:S895. CrossRef

501. ElrefaeF, ElhassanienAF, AlghiatyHA. Congenital chloride diarrhea: a review of twelve Arabian children. Clinical Exp Gastroenterol2013;6:71.

502. TurnbergLA. Abnormalities in intestinal electrolyte transport in congenital chloridorrhoea. Gut1971;12:544. [Epub 1971/07/01]. CrossRef

503. BieberdorfFA, GordenP, FordtranJS. Pathogenesis of congenital alkalosis with diarrhea. Implications for the physiology of normal ileal electrolyte absorption and secretion. J Clin Invest1972;51:1958. [Epub 1972/08/01]. CrossRef

504. HolmbergC, PerheentupaJ, LaunialaK. Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest1975;56:302. [Epub 1975/08/01]. CrossRef

505. CananiRB, TerrinG, ElceA, et al.Genotype‐dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J Rare Dis2013;8:194. CrossRef

506. OrlowskiJ, GrinsteinS. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch2004;447:549. [Epub 2003/07/08]. CrossRef

507. BoothIW, StangeG, MurerH, et al.Defective jejunal brush‐border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet1985;1:1066. [Epub 1985/05/11]. CrossRef

508. MullerT, WijmengaC, PhillipsAD, et al.Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology2000;119:1506. CrossRef

509. FellJM, MillerMP, FinkelY, et al.Congenital sodium diarrhea with a partial defect in jejunal brush border membrane sodium transport, normal rectal transport, and resolving diarrhea. J Pediatr Gastroenterol Nutr1992;15:112. [Epub 1992/08/01]. CrossRef

510. CollinsJF, XuH, KielaPR, et al.Functional and molecular characterization of NHE3 expression during ontogeny in rat jejunal epithelium. Am J Physiol1997;273(6 Pt 1):C1937. [Epub 1998/01/22].

511. BaumM, MartinMG, BoothIW, et al.Nucleotide sequence of the Na+/H+ exchanger‐8 in patients with congenital sodium diarrhea. J Pediatr Gastroenterol Nutr2011;53:474.

512. HanssonJH, Nelson‐WilliamsC, SuzukiH, et al.Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet1995;11:76. [Epub 1995/09/01]. CrossRef

513. BertogM, CuffeJE, PradervandS, et al.Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle's syndrome. J Physiol2008;586:459. [Epub 2007/11/17]. CrossRef

514. BossonD, KuhnleU, MeesN, et al.Generalized unresponsiveness to mineralocorticoid hormones: familial recessive pseudohypoaldosteronism due to aldosterone‐receptor deficiency. Acta Endocrinol Suppl (Copenh)1986;279:376. [Epub 1986/01/01].

515. OberfieldSE, LevineLS, CareyRM, et al.Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab1979;48:228. [Epub 1979/02/01]. CrossRef

516. StrautnieksSS, ThompsonRJ, GardinerRM, et al.A novel splice‐site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet1996;13:248. [Epub 1996/06/01]. CrossRef

517. GregerR. Role of CFTR in the colon. Annu Rev Physiol2000;62:467. [Epub 2000/06/09]. CrossRef

518. McColeDF, BarrettKE. Decoding epithelial signals: critical role for the epidermal growth factor receptor in controlling intestinal transport function. Acta Physiol2009;195:149. CrossRef

519. BerdievBK, QadriYJ, BenosDJ. Assessment of the CFTR and ENaC association. Mol Biosyst2009;5:123. CrossRef

520. OdesHS, SmirnoffP, GubermanR, et al.Cystic fibrosis transmembrane conductance regulator and Na+ channel subunits mRNA transcripts, and Cl‐ efflux, show a different distribution in rat duodenum and colon. Acta Physiol Scand2003;178:231. CrossRef

521. ZielenskiJ, TsuiLC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet1995;29:777. [Epub 1995/01/01]. CrossRef

522. RoweSM, VerkmanAS. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med2013;3:●●.

523. O′LoughlinEV, HuntDM, GaskinKJ, et al.Abnormal epithelial transport in cystic fibrosis jejunum. Am J Physiol1991;260(5 Pt 1):G758. [Epub 1991/05/01].

524. QuintonPM. Role of epithelial HCO3(‐) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol2010;299:C1222. CrossRef

525. GabrielSE, BrigmanKN, KollerBH, et al.Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science1994;266:107. [Epub 1994/10/07]. CrossRef

526. KuningasM, van BodegomD, MayL, et al.Common CFTR gene variants influence body composition and survival in rural Ghana. Hum Genet2010;127:201. CrossRef

527. PoolmanEM, GalvaniAP. Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface2007;4:91. CrossRef

528. PierGB, GroutM, ZaidiT, et al.Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature1998;393:79. [Epub 1998/05/20]. CrossRef

529. van de VosseE, de VisserAW, Al‐AttarS, et al.Distribution of CFTR variations in an Indonesian enteric fever cohort. Clin Infect Dis2010;50:1231. CrossRef

530. CutzE, RhoadsJM, DrummB, et al.Microvillus inclusion disease: an inherited defect of brush‐border assembly and differentiation. N Engl J Med1989;320:646. [Epub 1989/03/09]. CrossRef

531. AmeenNA, SalasPJ. Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic2000;1:76. [Epub 2001/02/24]. CrossRef

532. ShermanPM, MitchellDJ, CutzE. Neonatal enteropathies: defining the causes of protracted diarrhea of infancy. J Pediatr Gastroenterol Nutr2004;38:16. [Epub 2003/12/17]. CrossRef

533. MullerT, HessMW, SchiefermeierN, et al.MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet2008;40:1163. CrossRef

534. GouletO, SalomonJ, RuemmeleF, et al.Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis2007;2:20. [Epub 2007/04/24]. CrossRef

535. SivagnanamM, MuellerJL, LeeH, et al.Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology2008;135:429. [Epub 2008/06/24]. CrossRef

536. MuellerJL, McGeoughMD, PenaCA, et al.Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol2014;306:G278. [Epub 2013/12/18]. CrossRef

537. Heinz‐ErianP, MullerT, KrabichlerB, et al.Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet2009;84:188. CrossRef

538. SalomonJ, GouletO, CanioniD, et al.Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet2014;133:299. [Epub 2013/10/22]. CrossRef

539. FabreA, CharrouxB, Martinez‐VinsonC, et al.SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet2012;90:689. [Epub 2012/03/27]. CrossRef

540. OelkersP, KirbyLC, HeubiJE, et al.Primary bile acid malabsorption caused by mutations in the ileal sodium‐dependent bile acid transporter gene (SLC10A2). J Clin Invest1997;99:1880. [Epub 1997/04/15]. CrossRef

541. ShneiderBL. Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr2001;32:407. [Epub 2001/06/09]. CrossRef

542. LozanoR, NaghaviM, ForemanK, et al.Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet2012;380:2095. [Epub 2012/12/19]. CrossRef

543. van HeyningenS. The subunits of cholera toxin: structure, stoichiometry, and function. J Infect Dis1976;133(Suppl):5. [Epub 1976/03/01]. CrossRef

544. GuichardA, Cruz‐MorenoB, AguilarB, et al.Cholera toxin disrupts barrier function by inhibiting exocyst‐mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe2013;14:294. [Epub 2013/09/17]. CrossRef

545. SwensonES, MannEA, JumpML, et al.The guanylin/STa receptor is expressed in crypts and apical epithelium throughout the mouse intestine. Biochem Biophys Res Commun1996;225:1009. [Epub 1996/08/23]. CrossRef

546. WeiglmeierPR, RoschP, BerknerH. Cure and curse: E. coli heat‐stable enterotoxin and its receptor guanylyl cyclase C. Toxins2010;2:2213. [Epub 2010/09/01]. CrossRef

547. DubreuilJD. The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol2012;14:71. [Epub 2012/03/01].

548. GillRK, BorthakurA, HodgesK, et al.Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J Clin Invest2007;117:428. [Epub 2007/01/27]. CrossRef

549. HodgesK, AltoNM, RamaswamyK, et al.The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell Microbiol2008;10:1735. [Epub 2008/04/25]. CrossRef

550. McCormickBA, ColganSP, Delp‐ArcherC, et al.Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol1993;123:895. [Epub 1993/11/01]. CrossRef

551. GewirtzAT, RaoAS, SimonPOJr, et al.Salmonella typhimurium induces epithelial IL‐8 expression via Ca(2+)‐mediated activation of the NF‐kappaB pathway. J Clin Invest2000;105:79. [Epub 2000/01/05]. CrossRef

552. CananiRB, TerrinG. Recent progress in congenital diarrheal disorders. Curr Gastroenterol Rep2011;13:257. CrossRef

553. CiclitiraPJ, JohnsonMW, DewarDH, et al.The pathogenesis of coeliac disease. Mol Aspects Med2005;26:421. [Epub 2005/08/30]. CrossRef

554. DragoS, El AsmarR, Di PierroM, et al.Gliadin, zonulin and gut permeability: effects on celiac and non‐celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol2006;41:408. [Epub 2006/04/26]. CrossRef

555. FasanoA. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol2012;10:1096. [Epub 2012/08/21]. CrossRef

556. TripathiA, LammersKM, GoldblumS, et al.Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin‐2. Proc Natl Acad Sci U S A2009;106:16799. [Epub 2009/10/07]. CrossRef

557. FischerA, GluthM, WeegeF, et al.Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP‐1. Am J Physiol Gastrointest Liver Physiol2014;306:G218. [Epub 2013/12/07]. CrossRef

558. SuL, NalleSC, ShenL, et al.TNFR2 activates MLCK‐dependent tight junction dysregulation to cause apoptosis‐mediated barrier loss and experimental colitis. Gastroenterology2013;145:407. [Epub 2013/04/27]. CrossRef

559. SchulzkeJD, PloegerS, AmashehM, et al.Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci2009;1165:294. [Epub 2009/06/23]. CrossRef

560. PanwalaCM, JonesJC, VineyJL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol1998;161:5733. [Epub 1998/11/20].

561. ValverdeMA, HardySP, SepulvedaFV. Chloride channels: a state of flux. FASEB J1995;9:509. [Epub 1995/04/01].

562. SundaramU, WiselS, FromkesJJ. Unique mechanism of inhibition of Na+‐amino acid cotransport during chronic ileal inflammation. Am J Physiol1998;275(3 Pt 1):G483. [Epub 1998/09/02].

563. GreigER, Boot‐HandfordRP, ManiV, et al.Decreased expression of apical Na+ channels and basolateral Na+, K+‐ATPase in ulcerative colitis. J Pathol2004;204:84. [Epub 2004/08/13]. CrossRef

564. SullivanS, AlexP, DassopoulosT, et al.Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD‐associated diarrhea. Inflamm Bowel Dis2009;15:261. [Epub 2008/10/24]. CrossRef

565. Diaz‐GranadosN, HoweK, LuJ, et al.Dextran sulfate sodium‐induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol2000;156:2169. [Epub 2000/06/15]. CrossRef

566. GudsoorkarVS, QuigleyEM. Emerging treatments for chronic constipation. Expert Opin Emerg Drugs2013;18:365. [Epub 2013/08/21]. CrossRef

567. Gras‐MirallesB, CremoniniF. A critical appraisal of lubiprostone in the treatment of chronic constipation in the elderly. Clin Interv Aging2013;8:191. [Epub 2013/02/27].

568. LayerP. Management of irritable bowel syndrome with constipation: a flexible approach to treating a complex condition with multiple symptoms. Expert Rev Gastroenterol Hepatol2013;7(5 Suppl 1):9. [Epub 2013/07/24]. CrossRef

569. BryantAP, BusbyRW, BartoliniWP, et al.Linaclotide is a potent and selective guanylate cyclase C agonist that elicits pharmacological effects locally in the gastrointestinal tract. Life Sci2010;86:760. [Epub 2010/03/24]. CrossRef

570. CheyWD, CamilleriM, ChangL, et al.A randomized placebo‐controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol2011;106:1803. [Epub 2011/05/25]. CrossRef