Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Pancreatic secretion

1. AndoS. A study of the vascular suply in the pancreas. Fukuoka Acta Med1959;50.

2. HendersonJR, DanielPM. Portal circulations and their relation to counter‐current systems. Q J Exp Physiol Cogn Med Sci1978;63:355.

3. DyckWP, TexterEJ, LasaterJ, et al.Influence of glucagon on pancreatic exocrine secretion in man. Gastroenterology1970;58:532.

4. FontanaG, CostaPL, TessariR, et al.Effect of glucagon on pure human exocrine pancretic secretion. Am J Gastroenterol1975;63:490.

5. DomschkeS, DomschkeW, RoschW, et al.Inhibition by somatostatin of secretin‐stimulated pancreatic secretion in man: a study with pure pancreatic juice. Scand J Gastroenterol1977;12:59.

6. GreenbergGR, McCloyRF, ChadwickVS, et al.Effect of bovine pancreatic polypeptide on basal pancreatic and biliary outputs in man. Dig Dis Sci1979;24:11. CrossRef

7. SaitoA, WilliamsJA, KannoT. Potentiation of cholecystokinin‐induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata. J Clin Invest1980;65:777. CrossRef

8. JiB, BiY, SimeoneD, et al.Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. Gastroenterology2001;121:1380. CrossRef

9. OwyangC, LogsdonCD. New insights into neurohormonal regulation of pancreatic secretion. Gastroenterology2004;127:957. CrossRef

10. WeatherfordSC, LaughtonWB, SalabarriaJ, et al.CCK satiety is differentially mediated by high‐ and low‐affinity CCK receptors in mice and rats. Am J Physiol1993;264:R244.

11. SchwartzGJ, McHughPR, MoranTH. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents. Am J Physiol1994;267:R303.

12. LiY, HaoY, OwyangC. High‐affinity CCK‐A receptors on the vagus nerve mediate CCK‐stimulated pancreatic secretion in rats. Am J Physiol1997;273:G679.

13. KuvshinoffBW, BrodishRJ, JamesL, et al.Somatostatin inhibits secretin‐induced canine pancreatic response via a cholinergic mechanism. Gastroenterology1993;105:539.

14. LiY, OwyangC. Somatostatin inhibits pancreatic enzyme secretion at a central vagal site. Am J Physiol1993;265:G251.

15. WhitcombDC, TaylorIL, VignaSR. Characterization of saturable binding sites for circulating pancreatic polypeptide in rat brain. Am J Physiol1990;259:G687.

16. LiY, ZhuJ, RillamasE, et al.Glucagon‐like‐peptide‐1 acts via dorsal vagal complex to inhibit pancreatic enzyme secretion. Gastroenterology1998;114:A1158.

17. GorelickF, JamiesonJ. Structure‐function relations in the pancreatic acinar cell. In: JohnsonL(ed.). Physiology of the Gastrointestinal Tract, 5th edn. San Diego, CA: Elsevier; 2012: 1399.

18. BurghardtB, NielsenS, StewardMC. The role of aquaporin water channels in fluid secretion by the exocrine pancreas. J Membr Biol2006;210:143. CrossRef

19. BurghardtB, ElkaerML, KwonTH, et al.Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut2003;52:1008. CrossRef

20. LeeMG, OhanaE, ParkHW, et al.Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev2012;92:39. CrossRef

21. ArgentB, GrayM, StewardM, et al.Cell physiology of pancreatic ducts. In: JohnsonL(ed.). Physiology of the Gastrointestinal Tract, 5th edn. San Diego, CA: Elsevier Academic Press; 2012: 1399. CrossRef

22. QuintonPM. Cystic fibrosis: a disease in electrolyte transport. FASEB J1990;4:2709.

23. RiordanJR. CFTR function and prospects for therapy. Annu Rev Biochem2008;77:701. CrossRef

24. KopelmanH, DurieP, GaskinK, et al.Pancreatic fluid secretion and protein hyperconcentration in cystic fibrosis. N Engl J Med1985;312:329. CrossRef

25. MarinoCR, MatovcikLM, GorelickFS, et al.Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J Clin Invest1991;88:712. erratum appears in J Clin Invest 1991;88:1433. CrossRef

26. GrayMA, HarrisA, ColemanL, et al.Two types of chloride channel on duct cells cultured from human fetal pancreas. Am J Physiol1989;257:C240.

27. RaederMG. The origin of and subcellular mechanisms causing pancreatic bicarbonate secretion. Gastroenterology1992;103:1674.

28. KimKH, ShcheynikovN, WangY, et al.SLC26A7 is a Cl‐ channel regulated by intracellular pH. J Biol Chem2005;280:6463. CrossRef

29. NovakI, GregerR. Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport. Pflugers Arch1988;411:546. CrossRef

30. CaseRM, ScratcherdT, WynneRD. The origin and secretion of pancreatic juice bicarbonate. J Physiol1970;210:1. CrossRef

31. VeelT, VillangerO, HoltheMR, et al.Na+‐H+ exchange is not important for pancreatic HCO−3 secretion in the pig. Acta Physiol Scand1992;144:239. CrossRef

32. BuanesT, GrotmolT, LandsverkT, et al.Effects of arterial pH and carbon dioxide on pancreatic exocrine H+/HCO−3 secretion and secretin‐dependent translocation of cytoplasmic vesicles in pancreatic duct cells. Acta Physiol Scand1988;133:1. CrossRef

33. IshiguroH, StewardMC, WilsonRW, et al.Bicarbonate secretion in interlobular ducts from guinea‐pig pancreas. J Physiol1996;495:179. CrossRef

34. IshiguroH, NaruseS, StewardMC, et al.Fluid secretion in interlobular ducts isolated from guinea‐pig pancreas. J Physiol1998;511:407. CrossRef

35. SmithZD, CaplanMJ, ForbushB3rd, et al.Monoclonal antibody localization of Na+‐K+‐ATPase in the exocrine pancreas and parotid of the dog. Am J Physiol1987;253:G99.

36. AbuladzeN, LeeI, NewmanD, et al.Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem1998;273:17689. CrossRef

37. MarinoCR, JeanesV, BoronWF, et al.Expression and distribution of the Na+‐HCO−3 cotransporter in human pancreas. Am J Physiol1999;277:G487.

38. GrossE, AbuladzeN, PushkinA, et al.The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO−3:1 Na+. J Physiol2001;531:375. CrossRef

39. ShumakerH, AmlalH, FrizzellR, et al.CFTR drives Na+‐nHCO−3 cotransport in pancreatic duct cells: a basis for defective HCO−3 secretion in CF. Am J Physiol1999;276:C16.

40. NovakI, GregerR. Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts. Pflugers Arch1991;419:76. CrossRef

41. BorgstromB, Erlanson‐AlbertssonC, WielochT. Pancreatic colipase: chemistry and physiology. J Lipid Res1979;20:805.

42. BorgstromB. On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts. J Lipid Res1975;16:411.

43. PaladeG. Intracellular aspects of the process of protein synthesis. Science1975;189:347. CrossRef

44. CaseR. Pancreatic secretion: cellular aspects. In: DutheH, WormsleyK(eds). Scientific Basis of Gastroenterology. Edinburgh: Churchill Livingstone; 1979: 163.

45. RosewiczS, LewisLD, WangXY, et al.Pancreatic digestive enzyme gene expression: effects of CCK and soybean trypsin inhibitor. Am J Physiol1989;256:G733.

46. SansM, CrozierS, WilliamsJ. Regulation of pancreatic protein synthesis and growth. In: BegerH(ed.). The Pancreas, 2nd edn. Oxford: Blackwell Publishing; 2008: 131.

47. BragadoMJ, GroblewskiGE, WilliamsJA. Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS‐I and the p70 S6 kinase pathway. Gastroenterology1998;115:733. CrossRef

48. BragadoMJ, TashiroM, WilliamsJA. Regulation of the initiation of pancreatic digestive enzyme protein synthesis by cholecystokinin in rat pancreas in vivo. Gastroenterology2000;119:1731. CrossRef

49. BragadoMJ, GroblewskiGE, WilliamsJA. p70s6k is activated by CCK in rat pancreatic acini. Am J Physiol1997;273:C101.

50. WalterP, GilmoreR, BlobelG. Protein translocation across the endoplasmic reticulum. Cell1984;38:5. CrossRef

51. ScheeleG, DobbersteinB, BlobelG. Transfer of proteins across membranes, Biosynthesis in vitro of pretrypsinogen and trypsinogen by cell fractions of canine pancreas. Eur J Biochem1978;82:593. CrossRef

52. CaplanM, RosenweigS, JamiesonJ. Processing and sorting of proteins synthesized in the endoplasmic reticulum. In: AndreoliT, FanestilD, HoffmanJ, et al. (eds). Physiology of Membrane Disorders. New York: Plenum Publishing; 1986: 273. CrossRef

53. SchroderM, KaufmanRJ. The mammalian unfolded protein response. Annu Rev Biochem2005;74:739. CrossRef

54. JamiesonJD, PaladeGE. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol1968;39:589. CrossRef

55. ReggioHA, PaladeGE. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol1978;77:288. CrossRef

56. ScheeleGA, PaladeGE. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem1975;250:2660.

57. SommerH, SchrezenmeirJ, KasperH. Output‐dependent non‐parallel enzyme secretion of the human pancreas. Hepatogastroenterology1985;32:246.

58. DagornJC, ParadisD, MorissetJ. Non‐parallel response of amylase and chymotrypsinogen biosynthesis following pancreatic stimulation: a possible explanation for observed non‐parallelism in pancreatic secretion. Digestion1977;15:110. CrossRef

59. DagornJC, SahelJ, SarlesH. Nonparallel secretion of enzymes in human duodenal juice and pure pancreatic juice collected by endoscopic retrograde catheterization of the papilla. Gastroenterology1977;73:42.

60. AdelsonJW, MillerPE. Heterogeneity of the exocrine pancreas. Am J Physiol1989;256:G817.

61. MrozEA, LecheneC. Pancreatic zymogen granules differ markedly in protein composition. Science1986;232:871. CrossRef

62. AdelsonJW, MillerPE. Pancreatic secretion by nonparallel exocytosis: potential resolution of a long controversy. Science1985;228:993. CrossRef

63. WormsleyKG, GoldbergDM. The interrelationships of the pancreatic enzymes. Gut1972;13:398. CrossRef

64. OwyangC, MillerLJ, DiMagnoEP, et al.Gastrointestinal hormone profile in renal insufficiency. Mayo Clin Proc1979;54:769.

65. SchlegelA, ArvanP, LisantiMP. Caveolin‐1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem2001;276:4398. CrossRef

66. ThomasDDH, KrzykowskiKJ, EngelkeJA, et al.Exocrine pancreatic secretion of phospholipid, menaquinone‐4, and caveolin‐1 in vivo. Biochem Biophys Res Commun2004;319:974. CrossRef

67. MutohH, FungBP, NayaFJ, et al.The basic helix‐loop‐helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc Natl Acad Sci U S A1997;94:3560. CrossRef

68. MeyerJH, WayLW, GrossmanMI. Pancreatic bicarbonate response to various acids in duodenum of the dog. Am J Physiol1970;219:964.

69. FahrenkrugJ, Schaffalitzky de MuckadellOB, RuneSJ. pH threshold for release of secretin in normal subjects and in patients with duodenal ulcer and patients with chronic pancreatitis. Scand J Gastroenterol1978;13:177. CrossRef

70. CheyWY, LeeYH, HendricksJG, et al.Plasma secretin concentrations in fasting and postprandial state in man. Am J Dig Dis1978;23:981. CrossRef

71. RuneSJ. pH in the human duodenum. Its physiological and pathophysiological significance. Digestion1973;8:261. CrossRef

72. Schaffalitzky de MuckadellOB, FahrenkrugJ. Secretion pattern of secretin in man: regulation by gastric acid. Gut1978;19:812. CrossRef

73. LiP, LeeKY, ChangTM, et al.Mechanism of acid‐induced release of secretin in rats. Presence of a secretin‐releasing peptide. J Clin Invest1990;86:1474. CrossRef

74. WatanabeS, CheyWY, LeeKY, et al.Secretin is released by digestive products of fat in dogs. Gastroenterology1986;90:1008.

75. MeyerJH, JonesRS. Canine pancreatic responses to intestinally perfused fat and products of fat digestion. Am J Physiol1974;226:1178.

76. OsnesM, HanssenLE, FlatenO, et al.Exocrine pancreatic secretion and immunoreactive secretin (IRS) release after intraduodenal instillation of bile in man. Gut1978;19:180. CrossRef

77. Schaffalitzky de MuckadellOB, FahrenkrugJ, Watt‐BoolsenS, et al.Pancreatic response and plasma secretin concentration during infusion of low dose secretin in man. Scand J Gastroenterol1978;13:305. CrossRef

78. YouCH, RomingerJM, CheyWY. Effects of atropine on the action and release of secretin in humans. Am J Physiol1982;242:G608.

79. CheyWY, KimMS, LeeKY, et al.Effect of rabbit antisecretin serum on postprandial pancreatic secretion in dogs. Gastroenterology1979;77:1268.

80. UlrichCD2nd, WoodP, HadacEM, et al.Cellular distribution of secretin receptor expression in rat pancreas. Am J Physiol1998;275:G1437.

81. LiP, ChangTM, CheyWY. Neuronal regulation of the release and action of secretin‐releasing peptide and secretin. Am J Physiol1995;269:G305.

82. LuY, OwyangC. Secretin at physiological doses inhibits gastric motility via a vagal afferent pathway. Am J Physiol1995;268:G1012.

83. WuXY, ZhuJX, GaoJ, et al.Neurochemical phenotype of vagal afferent neurons activated to express C‐FOS in response to luminal stimulation in the rat. Neuroscience2005;130:757. CrossRef

84. WangL, VignaS, OwyangC. Autoradiographic visualization of secretin receptors on vagal afferent fibers: evidence for receptor coupling to G proteins and modulation by protein kinase C. Gastroenterology1995;108:A1015.

85. LiY, WuX, YaoH, et al.Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies. Am J Physiol Gastrointest Liver Physiol2005;289:G745.

86. LiddleRA. Cholecystokinin cells. Annu Rev Physiol1997;59:221. CrossRef

87. MeyerJH, KellyGA, SpingolaLJ, et al.Canine gut receptors mediating pancreatic responses to luminal L‐amino acids. Am J Physiol1976;231:669.

88. MalageladaJR, DiMagnoEP, SummerskillWH, et al.Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. J Clin Invest1976;58:493. CrossRef

89. LiY, OwyangC. Peptone stimulates CCK‐releasing peptide secretion by activating intestinal submucosal cholinergic neurons. J Clin Invest1996;97:1463. CrossRef

90. GreenGM, LymanRL. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor‐induced hypersecretion in rats. Proc Soc Exp Biol Med1972;140:6. CrossRef

91. LouieDS, MayD, MillerP, et al.Cholecystokinin mediates feedback regulation of pancreatic enzyme secretion in rats. Am J Physiol1986;250:G252.

92. LiddleRA, GreenGM, ConradCK, et al.Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol1986;251:G243.

93. LuL, LouieD, OwyangC. A cholecystokinin releasing peptide mediates feedback regulation of pancreatic secretion. Am J Physiol1989;256:G430.

94. LiouAP, ChavezDI, EsperoE, et al.Protein hydrolysate‐induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am J Physiol Gastrointest Liver Physiol2011;300:G895. CrossRef

95. SalujaAK, LuL, YamaguchiY, et al.A cholecystokinin‐releasing factor mediates ethanol‐induced stimulation of rat pancreatic secretion. J Clin Invest1997;99:506. CrossRef

96. JoYH, LeeYL, LeeKY, et al.Neurohormonal mechanism of pancreatic exocrine secretion stimulated by sodium oleate and L‐tryptophan in dogs. Am J Physiol1992;263:G12.

97. WangY, ChandraR, SamsaLA, et al.Amino acids stimulate cholecystokinin release through the Ca2+‐sensing receptor. Am J Physiol Gastrointest Liver Physiol2011;300:G528. CrossRef

98. LiouAP, LuX, SeiY, et al.The G‐protein‐coupled receptor GPR40 directly mediates long‐chain fatty acid‐induced secretion of cholecystokinin. Gastroenterology2011;140:903. CrossRef

99. JansenJB, LamersCB. Radioimmunoassay of cholecystokinin in human tissue and plasma. Clin Chim Acta1983;131:305. CrossRef

100. LiddleRA, GoldfineID, RosenMS, et al.Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest1985;75:1144. CrossRef

101. OwyangC, LouieDS, TatumD. Feedback regulation of pancreatic enzyme secretion. Suppression of cholecystokinin release by trypsin. J Clin Invest1986;77:2042. CrossRef

102. CantorP, RehfeldJF. The molecular nature of cholecystokinin in human plasma. Clin Chim Acta1987;168:153. CrossRef

103. ReeveJRJr, GreenGM, ChewP, et al.CCK‐58 is the only detectable endocrine form of cholecystokinin in rat. Am J Physiol Gastrointest Liver Physiol2003;285:G255. CrossRef

104. EysseleinVE, EberleinGA, HesseWH, et al.Cholecystokinin‐58 is the major circulating form of cholecystokinin in canine blood. J Biol Chem1987;262:214.

105. GlatzleJ, RaybouldHE, KueperMA, et al.Cholecystokinin‐58 is more potent in inhibiting food intake than cholecystokinin‐8 in rats. Nutr Neurosci2008;11:69. CrossRef

106. BeglingerC, FriedM, WhitehouseI, et al.Pancreatic enzyme response to a liquid meal and to hormonal stimulation. Correlation with plasma secretin and cholecystokinin levels. J Clin Invest1985;75:1471. CrossRef

107. KonturekSJ, TaslerJ, CieszkowskiM, et al.Hladij M. Effect of cholecystokinin receptor antagonist on pancreatic responses to exogenous gastrin and cholecystokinin and to meal stimuli. Gastroenterology1988;94:1014.

108. CantorP, MortensenPE, MyhreJ, et al.Survill TT. The effect of the cholecystokinin receptor antagonist MK‐329 on meal‐stimulated pancreaticobiliary output in humans. Gastroenterology1992;102:1742.

109. HenriksenFW, WorningH. The mutual influence of gastrin and secretin on the external pancreatic secretion in dogs. Acta Physiol Scand1969;76:67. CrossRef

110. HolstJ. Neural regulation of pancreatic exocrine function. In: GoV, DimagnoE, GardnerJ, et al. (eds). The Pancreas: Biology, Pathobiology, and Disease, 4th edn. New York: Raven Press; 1993: 381.

111. YouCH, RomingerJM, CheyWY. Potentiation effect of cholecystokinin‐octapeptide on pancreatic bicarbonate secretion stimulated by a physiologic dose of secretin in humans. Gastroenterology1983;85:40.

112. BeglingerC, GrossmanMI, SolomonTE. Interaction between stimulants of exocrine pancreatic secretion in dogs. Am J Physiol1984;246:G173.

113. WilliamsJA, KorcM, DormerRL. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol1978;235:517.

114. SingerMV. Pancreatic secretory response to intestinal stimulants: a review. Scand J Gastroenterol Suppl1987;139:1. CrossRef

115. SoudahHC, LuY, HaslerWL, et al.Cholecystokinin at physiological levels evokes pancreatic enzyme secretion via a cholinergic pathway. Am J Physiol1992;263:G102.

116. AdlerG, BeglingerC, BraunU, et al.Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology1991;100:537.

117. BozkurtT, AdlerG, KoopI, et al.Effect of atropine on intestinal phase of pancreatic secretion in man. Digestion1988;41:108. CrossRef

118. MalageladaJR, GoVL, SummerskillWH. Altered pancreatic and biliary function after vagotomy and pyloroplasty. Gastroenterology1974;66:22.

119. LiY, OwyangC. Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic enzyme secretion. J Clin Invest1993;92:418. CrossRef

120. ChandraR, SamsaLA, VignaSR, et al.Pseudopod‐like basal cell processes in intestinal cholecystokinin cells. Cell Tissue Res2010;341:289. CrossRef

121. ZarbinMA, WamsleyJK, InnisRB, et al.Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Sci1981;29:697. CrossRef

122. LiY, ZhuJ, OwyangC. Electrical physiological evidence for highand low‐affinity vagal CCK‐A receptors. Am J Physiol1999;277:G469.

123. AppleyardSM, BaileyTW, DoyleMW, et al.Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J Neurosci2005;25:3578. CrossRef

124. BaptistaV, ZhengZL, ColemanFH, et al.Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J Neurophysiol2005;94:2763. CrossRef

125. CottrellGT, FergusonAV. Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul Pept2004;117:11. CrossRef

126. GrossPM, WallKM, PangJJ, et al.Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am J Physiol1990;259:R1131.

127. RogersRC, HermannGE, TravagliRA. Brainstem control of gastric function. In: JohnsonLR(ed). Physiology of the Gastrointestinal Tract. San Diego: Elsevier Academic Press; 2006: 851. CrossRef

128. BaptistaV, BrowningKN, TravagliRA. Effects of cholecystokinin‐8s in the nucleus tractus solitarius of vagally deafferented rats. Am J Physiol Regul Integr Comp Physiol2007;292:R1092. CrossRef

129. WanS, ColemanFH, TravagliRA. Cholecystokinin‐8s excites identified rat pancreatic‐projecting vagal motoneurons. Am J Physiol Gastrointest Liver Physiol2007;293:G484. CrossRef

130. ViardE, ZhengZ, WanS, et al.Vagally mediated, nonparacrine effects of cholecystokinin‐8s on rat pancreatic exocrine secretion. Am J Physiol Gastrointest Liver Physiol2007;293:G493. CrossRef

131. KatoM, OhkumaS, KataokaK, et al.Characterization of muscarinic receptor subtypes on rat pancreatic acini: pharmacological identification by secretory responses and binding studies. Digestion1992;52:194. CrossRef

132. GautamD, HanSJ, HeardTS, et al.Cholinergic stimulation of amylase secretion from pancreatic acinar cells studied with muscarinic acetylcholine receptor mutant mice. J Pharmacol Exp Ther2005;313:995. CrossRef

133. de WeerthA, PisegnaJR, HuppiK, et al.Molecular cloning, functional expression and chromosomal localization of the human cholecystokinin type A receptor. Biochem Biophys Res Commun1993;194:811. CrossRef

134. MurphyJA, CriddleDN, SherwoodM, et al.Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. Gastroenterology2008;135:632. CrossRef

135. PhillipsPA, YangL, ShulkesA, et al.Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion. Proc Natl Acad Sci U S A2010;107:17397. CrossRef

136. LiY, HaoY, ZhuJ, et al.Serotonin released from intestinal enterochromaffin cells mediates luminal non‐cholecystokinin‐stimulated pancreatic secretion in rats. Gastroenterology2000;118:1197. CrossRef

137. ZhuJX, ZhuXY, OwyangC, et al.Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol2001;530:431. CrossRef

138. LiY, WuXY, ZhuJX, et al.Intestinal serotonin acts as paracrine substance to mediate pancreatic secretion stimulated by luminal factors. Am J Physiol Gastrointest Liver Physiol2001;281:G916.

139. LiY, OwyangC. Pancreatic secretion evoked by cholecystokinin and non‐cholecystokinin‐dependent duodenal stimuli via vagal afferent fibres in the rat. J Physiol1996;494:773. CrossRef

140. SchworerH, RackeK, KilbingerH. Spontaneous release of endogenous 5‐hydroxytryptamine and 5‐hydroxyindoleacetic acid from the isolated vascularly perfused ileum of the guinea‐pig. Neuroscience1987;21:297. CrossRef

141. FujitaT, KobayashiS, MurakiS, et al.Gut endocrine cells as chemoreceptors. In: MiyoshiA(ed). Gut Peptides: Secretion, Function and Clinical Aspects. Tokyo: Kodansha/Elsevier; 1979: 47.

142. O'HaraRS, FoxRO, ColeJW. Serotonin release mediated by intraluminal sucrose solutions. Surg Forum1960;10:214.

143. LarssonI. Studies on the extrinsic neural control of serotonin release from the small intestine. Acta Physiol Scand Suppl1981;499:1.

144. BulbringE, CremaA. The release of 5‐hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J Physiol1959;146:18. CrossRef

145. BerthoudHR, KresselM, RaybouldHE, et al.Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI‐tracing. Anat Embryol (Berl)1995;191:203. CrossRef

146. BlackshawLA, GrundyD. Effects of 5‐hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst1993;45:41. CrossRef

147. AndrewsPL, DavisCJ, BinghamS, et al.The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol1990;68:325. CrossRef

148. HillsleyK, KirkupAJ, GrundyD. Direct and indirect actions of 5‐hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. J Physiol1998;506:551. CrossRef

149. LiY, WuXY, OwyangC. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones. J Physiol2004;559:651. CrossRef

150. LiJP, ChangTM, CheyWY. Roles of 5‐HT receptors in the release and action of secretin on pancreatic secretion in rats. Am J Physiol Gastrointest Liver Physiol2001;280:G595.

151. SuzukiA, NaruseS, KitagawaM, et al.5‐hydroxytryptamine strongly inhibits fluid secretion in guinea pig pancreatic duct cells. J Clin Invest2001;108:749. CrossRef

152. MasudaM, MiyasakaK, FunakoshiA. Involvement of 5‐hydroxytryptamine (5‐HT)3 receptor mechanisms in regulation of basal pancreatic secretion in conscious rats. J Auton Nerv Syst1997;62:58. CrossRef

153. MatsushitaK, OkabayashiY, KoideM, et al.Potentiating effect of insulin on exocrine secretory function in isolated rat pancreatic acini. Gastroenterology1994;106:200.

154. LeeKY, ZhouL, RenXS, et al.An important role of endogenous insulin on exocrine pancreatic secretion in rats. Am J Physiol1990;258:G268.

155. CheyWY, ShayH, ShumanCR. External Pancreatic Secretion in Diabetes Mellitus. Ann Intern Med1963;59:812. CrossRef

156. PolakJM, BloomSR, HobbsS, et al.Distribution of a bombesin‐like peptide in human gastrointestinal tract. Lancet1976;1:1109. CrossRef

157. BassoN, GiriS, ImprotaG, et al.External pancreatic secretion after bombesin infusion in man. Gut1975;16:994. CrossRef

158. JensenRT, MoodyT, PertC, et al.Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci U S A1978;75:6139. CrossRef

159. ErspamerV, ImprotaG, MelchiorriP. Sopranzi N. Evidence of cholecystokinin release by bombesin in the dog. Br J Pharmacol1974;52:227. CrossRef

160. TaylorIL, WalshJH, CarterD, et al.Effects of atropine and bethanechol on bombesin‐stimulated release of pancreatic polypeptide and gastrin in dog. Gastroenterology1979;77:714.

161. FloweKM, WellingTH, MulhollandMW. Gastrin‐releasing peptide stimulation of amylase release from rat pancreatic lobules involves intrapancreatic neurons. Pancreas1994;9:513. CrossRef

162. HerzigKH, LouieDS, OwyangC. In vivo action of bombesin on exocrine pancreatic secretion in the rat: independent of cholecystokinin and cholinergic mediation. Pancreas1988;3:292. CrossRef

163. HildebrandP, DreweJ, LuoH, et al.Role of cholecystokinin in mediating GRP‐stimulated gastric, biliary and pancreatic functions in man. Regul Pept1992;41:119. CrossRef

164. VargaG, ReidelbergerRD, LiehrRM, et al.Effects of potent bombesin antagonist on exocrine pancreatic secretion in rats. Peptides1991;12:493. CrossRef

165. FletcherDR, BlackburnAM, AdrianTE, et al.Effect of neurotensin on pancreatic function in man. Life Sci1981;29:2157. CrossRef

166. KonturekSJ, JaworekJ, CieszkowskiM, et al.Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs. Am J Physiol1983;244:G590.

167. NagainC, ChariotJ, RozeC. Mechanism of neurotensin stimulation of external pancreatic secretion in the rat. Pancreas1993;8:346. CrossRef

168. KojimaM, HosodaH, DateY, et al.Ghrelin is a growth‐hormone‐releasing acylated peptide from stomach. Nature1999;402:656. CrossRef

169. DateY, KojimaM, HosodaH, et al.Ghrelin, a novel growth hormone‐releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology2000;141:4255.

170. CummingsDE, PurnellJQ, FrayoRS, et al.A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes2001;50:1714. CrossRef

171. LiY, WuX, ZhaoY, et al.Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am J Physiol Gastrointest Liver Physiol2006;290:G1350. CrossRef

172. LaiJK, ChengCH, KoWH, et al.Ghrelin system in pancreatic AR42J cells: its ligand stimulation evokes calcium signalling through ghrelin receptors. Int J Biochem Cell Biol2005;37:887. CrossRef

173. ShimosegawaT, AbeT, SatohA, et al.NADPH‐diaphorase activity in neurons of the mammalian pancreas: coexpression with vasoactive intestinal polypeptide. Gastroenterology1993;105:999.

174. JyotheeswaranS, LiP, ChangTM, et al.Endogenous nitric oxide mediates pancreatic exocrine secretion stimulated by secretin and cholecystokinin in rats. Pancreas2000;20:401. CrossRef

175. MoleroX, GuarnerF, SalasA, et al.Nitric oxide modulates pancreatic basal secretion and response to cerulein in the rat: effects in acute pancreatitis. Gastroenterology1995;108:1855. CrossRef

176. KonturekJW, HengstK, KuleszaE, et al.Role of endogenous nitric oxide in the control of exocrine and endocrine pancreatic secretion in humans. Gut1997;40:86. CrossRef

177. YoshidaH, TsunodaY, OwyangC. Effect of uncoupling NO/cGMP pathways on carbachol‐ and CCK‐stimulated Ca2+ entry and amylase secretion from the rat pancreas. Pflugers Arch1997;434:25. CrossRef

178. LiuMT, KirchgessnerAL. Guinea pig pancreatic neurons: morphology, neurochemistry, electrical properties, and response to 5‐HT. Am J Physiol1997;273:G1273.

179. LawrenceAJ, KrstewE, JarrottB. Actions of nitric oxide and expression of the mRNA encoding nitric oxide synthase in rat vagal afferent neurons. Eur J Pharmacol1996;315:127. CrossRef

180. PatelAG, ToyamaMT, NguyenTN, et al.Role of nitric oxide in the relationship of pancreatic blood flow and exocrine secretion in cats. Gastroenterology1995;108:1215. CrossRef

181. LiuX, NakanoI, YamaguchiH, et al.Protective effect of nitric oxide on development of acute pancreatitis in rats. Dig Dis Sci1995;40:2162. CrossRef

182. BabicT, BrowningKN, KawaguchiY, et al.Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat. J Physiol2012;590:3611. CrossRef

183. OwyangC. Physiological mechanisms of cholecystokinin action on pancreatic secretion. Am J Physiol1996;271:G1.

184. BrooksFP. The neurohumoral control of pancreatic exocrine secretion. Am J Clin Nutr1973;26:291.

185. BrooksFP, ManfredoH. The control of pancreatic secretion and its clinical significance. Am J Gastroenterol1964;42:42.

186. MacGregorI, ParentJ, MeyerJH. Gastric emptying of liquid meals and pancreatic and biliary secretion after subtotal gastrectomy or truncal vagotomy and pyloroplasty in man. Gastroenterology1977;72:195.

187. CheyWY, KimMS, LeeKY. Influence of the vagus nerve on release and action of secretin in dog. J Physiol1979;293:435. CrossRef

188. DooleyCP, ValenzuelaJE. Duodenal volume and osmoreceptors in the stimulation of human pancreatic secretion. Gastroenterology1984;86:23.

189. OwyangC, MayD, LouieDS. Trypsin suppression of pancreatic enzyme secretion. Differential effect on cholecystokinin release and the enteropancreatic reflex. Gastroenterology1986;91:637.

190. AndrewsPL, GrundyD, ScratcherdT. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J Physiol1980;298:513. CrossRef

191. JeanningrosR. Effect of intestinal amino acid infusions on hypothalamic single unit activity in the anesthetized cat. Brain Res Bull1983;10:15. CrossRef

192. AndrewsCJ, AndrewsWH. Receptors, activated by acid, in the duodenal wall of rabbits. Q J Exp Physiol Cogn Med Sci1971;56:221.

193. OkumuraT, TaylorIL, PappasTN. Microinjection of TRH analogue into the dorsal vagal complex stimulates pancreatic secretion in rats. Am J Physiol1995;269:G328.

194. LuYX, TsunodaY, LiY, et al.Adaptive changes of enteric cholinergic neurons projecting to the pancreas following chronic vagotomy: upregulation of CCK receptor affinity. Gastroenterology2001;120(Suppl 1):A24. CrossRef

195. YiE, SmithTG, BakerRC, et al.Catecholamines and 5‐hydroxytryptamine in tissues of the rabbit exocrine pancreas. Pancreas2004;29:218. CrossRef

196. LarssonLI, RehfeldJF. Peptidergic and adrenergic innervation of pancreatic ganglia. Scand J Gastroenterol1979;14:433.

197. JoehlRJ, RoseRC, NahrwoldDL. Norepinephrine stimulates amylase release from pancreatic acini. J Surg Res1983;34:543. CrossRef

198. PearsonGT, SinghJ, PetersenOH. Adrenergic nervous control of cAMP‐mediated amylase secretion in the rat pancreas. Am J Physiol1984;246:G563.

199. RogersRC, McTigueDM, HermannGE. Vagal control of digestion: modulation by central neural and peripheral endocrine factors. Neurosci Biobehav Rev1996;20:57. CrossRef

200. SingerMV, Niebergall‐RothE. Secretion from acinar cells of the exocrine pancreas: role of enteropancreatic reflexes and cholecystokinin. Cell Biol Int2009;33:1. CrossRef

201. LiY, WuX, ZhuJ, et al.Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat. J Physiol2003;552:571. CrossRef

202. KirchgessnerAL, GershonMD. Presynaptic inhibition by serotonin of nerve‐mediated secretion of pancreatic amylase. Am J Physiol1995;268:G339.

203. KirchgessnerAL, GershonMD. Innervation of the pancreas by neurons in the gut. J Neurosci1990;10:1626.

204. HolstJJ, FahrenkrugJ, KnuhtsenS, et al.Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in control of fluid and bicarbonate secretion. Regul Pept1984;8:245. CrossRef

205. FahrenkrugJ, Schaffalitzky de MuckadellOB, HolstJJ, et al.Vasoactive intestinal polypeptide in vagally mediated pancreatic secretion of fluid and HCO3. Am J Physiol1979;237:E535.

206. RunziM, MullerMK, SchmidP, et al.Stimulatory and inhibitory effects of galanin on exocrine and endocrine rat pancreas. Pancreas1992;7:619. CrossRef

207. YagciRV, AlptekinN, ZachariaS, et al.Galanin inhibits pancreatic amylase secretion in the pentobarbital‐anesthetized rat. Regul Pept1991;34:275. CrossRef

208. HerzigKH, BrunkeG, SchonI, et al.Mechanism of galanin's inhibitory action on pancreatic enzyme secretion: modulation of cholinergic transmission–studies in vivo and in vitro. Gut1993;34:1616. CrossRef

209. LarssonLI. Innervation of the pancreas by substance P, enkephalin, vasoactive intestinal polypeptide and gastrin/CCK immunoractive nerves. J Histochem Cytochem1979;27:1283. CrossRef

210. MoghimzadehE, EkmanR, HakansonR, et al.Neuronal gastrin‐releasing peptide in the mammalian gut and pancreas. Neuroscience1983;10:553. CrossRef

211. PolakJM, BloomSR. Regulatory peptides – the distribution of two newly discovered peptides: PHI and NPY. Peptides1984;5(Suppl 1):79. CrossRef

212. FeurleGE, ReineckeM. Neurotensin interacts with carbachol, secretin, and caerulein in the stimulation of the exocrine pancreas of the rat in vitro. Regul Pept1983;7:137. CrossRef

213. SeifertH, SawchenkoP, ChesnutJ, et al.Receptor for calcitonin gene‐related peptide: binding to exocrine pancreas mediates biological actions. Am J Physiol1985;249:G147.

214. WilliamsJA, BurnhamD, HootmanSR. Cellular regulation of pancreatic secretion. In: ForteJG, SchultzS(eds). Handbook of Physiology – the Gastrointestinal System, III. Bethesda: American Physiological Society; 1989: 419.

215. JensenR. Receptors on pancreatic acinar cells. In: JohnsonL(ed.). Physiology of the Gastrointestinal Tract. III ed. New York: Raven Press; 1994: 1377.

216. WilliamsJA, BaileyAC, RoachE. Temperature dependence of high‐affinity CCK receptor binding and CCK internalization in rat pancreatic acini. Am J Physiol1988;254:G513.

217. RoettgerBF, RentschRU, HadacEM, et al.Insulation of a G protein‐coupled receptor on the plasmalemmal surface of the pancreatic acinar cell. J Cell Biol1995;130:579. CrossRef

218. CottonCU, al‐NakkashL. Isolation and culture of bovine pancreatic duct epithelial cells. Am J Physiol1997;272:G1328.

219. LogsdonCD. Molecular structure and function of G‐protein linked receptors. In: JohnsonL(ed.). Physiology of the Gastrointestinal Tract, 3rd edn. New York: Raven Press; 1994: 351.

220. UlrichCD2nd, HoltmannM, MillerLJ. Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein‐coupled receptors. Gastroenterology1998;114:382. CrossRef

221. HouslayMD. G‐protein linked receptors: a family probed by molecular cloning and mutagenesis procedures. Clin Endocrinol (Oxf)1992;36:525. CrossRef

222. SimonMI, StrathmannMP, GautamN. Diversity of G proteins in signal transduction. Science1991;252:802. CrossRef

223. YuleDI, BakerCW, WilliamsJA. Calcium signaling in rat pancreatic acinar cells: a role for Galphaq, Galpha11, and Galpha14. Am J Physiol1999;276:G271.

224. SabbatiniME, BiY, JiB, et al.CCK activates RhoA and Rac1 differentially through Galpha13 and Galphaq in mouse pancreatic acini. Am J Physiol Cell Physiol2010;298:C592. CrossRef

225. MatozakiT, WilliamsJA. Regulation of phospholipid hydrolysis in streptolysin‐O‐permeabilized rat pancreatic acini. Pancreas1992;7:59. CrossRef

226. WilliamsJA. Intracellular signaling mechanisms activated by cholecystokinin‐regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol2001;63:77. CrossRef

227. MeldrumE, ParkerPJ, CarozziA. The PtdIns‐PLC superfamily and signal transduction. Biochim Biophys Acta1991;1092:49. CrossRef

228. PiiperA, Stryjek‐KaminskaD, KlengelR, et al.CCK, carbachol, and bombesin activate distinct PLC‐beta isoenzymes via Gq/11 in rat pancreatic acinar membranes. Am J Physiol1997;272:G135.

229. TaussigR, GilmanAG. Mammalian membrane‐bound adenylyl cyclases. J Biol Chem1995;270:1. CrossRef

230. SabbatiniME, D'AlecyL, LentzSI, TangT, WilliamsJA. Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein Kinase A pathway activation. J Physiol2014;591:3693. CrossRef

231. LeeHC. Cyclic ADP‐ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem2012;287:31633. CrossRef

232. MatozakiT, WilliamsJA. Multiple sources of 1,2‐diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis. J Biol Chem1989;264:14729.

233. RydzewskaG, RossignolB, MorissetJ. Involvement of phospholipase D in caerulein‐induced phosphatidylcholine hydrolysis in rat pancreatic acini. Am J Physiol1993;265:G725.

234. WilliamsJA, YuleDI. Stimulus‐secretion coupling in pancreatic acinar cells. In: JohnsonL(ed.). Physiology of the Gastrointestinal Tract, 5th edn. San Diego: Elsevier Academic Press; 2012: 1361. CrossRef

235. WojcikiewiczRJ. Type I, II, and III inositol 1,4,5‐trisphosphate receptors are unequally susceptible to down‐regulation and are expressed in markedly different proportions in different cell types. J Biol Chem1995;270:11678. CrossRef

236. WagnerLE2nd, JosephSK, YuleDI. Regulation of single inositol 1,4,5‐trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol2008;586:3577. CrossRef

237. SternfeldL, KrauseE, GuseAH, et al.Hormonal control of ADP‐ribosyl cyclase activity in pancreatic acinar cells from rats. J Biol Chem2003;278:33629. CrossRef

238. OzawaT, ThevenodF, SchulzI. Characterization of two different Ca2+ uptake and IP3‐sensitive Ca2+ release mechanisms in microsomal Ca2+ pools of rat pancreatic acinar cells. J Membr Biol1995;144:111. CrossRef

239. YamasakiM, MasgrauR, MorganAJ, et al.Organelle selection determines agonist‐specific Ca2+ signals in pancreatic acinar and beta cells. J Biol Chem2004;279:7234. CrossRef

240. NathansonMH, FallonMB, PadfieldPJ, et al.Localization of the type 3 inositol 1,4,5‐trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem1994;269:4693.

241. YuleDI, ErnstSA, OhnishiH, et al.Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5‐trisphosphate receptors in pancreatic acinar cells. J Biol Chem1997;272:9093. CrossRef

242. TsunodaY, StuenkelEL, WilliamsJA. Oscillatory mode of calcium signaling in rat pancreatic acinar cells. Am J Physiol1990;258:C147.

243. PetersenCC, ToescuEC, PetersenOH. Different patterns of receptor‐activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca2+ buffering. EMBO J1991;10:527.

244. MuallemS. Calcium transport pathways of pancreatic acinar cells. Annu Rev Physiol1989;51:83. CrossRef

245. AshbyMC, TepikinAV. Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev2002;82:701. CrossRef

246. KimMS, HongJH, LiQ, et al.Deletion of TRPC3 in mice reduces store‐operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology2009;137:1509. CrossRef

247. YuleDI, GallacherDV. Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett1988;239:358. CrossRef

248. MatozakiT, GokeB, TsunodaY, et al.Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV‐180. J Biol Chem1990;265:6247.

249. KasaiH, AugustineGJ. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature1990;348:735. CrossRef

250. PetersenOH, TepikinAV. Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol2008;70:273. CrossRef

251. ThornP, LawrieAM, SmithPM, et al.Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell1993;74:661. CrossRef

252. ThornP, MoretonR, BerridgeM. Multiple, coordinated Ca2+‐release events underlie the inositol trisphosphate‐induced local Ca2+ spikes in mouse pancreatic acinar cells. EMBO J1996;15:999.

253. XuX, ZengW, DiazJ, et al.Spacial compartmentalization of Ca2+ signaling complexes in pancreatic acini. J Biol Chem1996;271:24684. CrossRef

254. ShinDM, LuoX, WilkieTM, et al.Polarized expression of G protein‐coupled receptors and an all‐or‐none discharge of Ca2+ pools at initiation sites of [Ca2+]i waves in polarized exocrine cells. J Biol Chem2001;276:44146. CrossRef

255. GiovannucciDR, GroblewskiGE, SneydJ, et al.Targeted phosphorylation of inositol 1,4,5‐trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. J Biol Chem2000;275:33704. CrossRef

256. YuleDI, StuenkelE, WilliamsJA. Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. Am J Physiol1996;271:C1285.

257. MetzDC, PattoRJ, MrozinskiJEJr, et al.Thapsigargin defines the roles of cellular calcium in secretagogue‐stimulated enzyme secretion from pancreatic acini. J Biol Chem1992;267:20620.

258. NishizukaY. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science1992;258:607. CrossRef

259. BurnhamDB, MunowitzP, HootmanSR, et al.Regulation of protein phosphorylation in pancreatic acini. Distinct effects of Ca2+ ionophore A23187 and 12‐O‐tetradecanoylphorbol 13‐acetate. Biochem J1986;235:125. CrossRef

260. WishartMJ, GroblewskiG, GokeBJ, et al.Secretagogue regulation of pancreatic acinar cell protein phosphorylation shown by large‐scale 2D‐PAGE. Am J Physiol1994;267:G676.

261. DuanRD, GuoYJ, WilliamsJA. Conversion to Ca2+‐independent form of Ca2+/calmodulin protein kinase II in rat pancreatic acini. Biochem Biophys Res Commun1994;199:368. CrossRef

262. BastaniB, YangL, BaldassareJJ, et al.Cellular distribution of isoforms of protein kinase C (PKC) in pancreatic acini. Biochim Biophys Acta1995;1269:307. CrossRef

263. LutzMP, PinonDI, MillerLJ. Characterization of protein serine/threonine phosphatases in rat pancreas and development of an endogenous substrate‐specific phosphatase assay. Pancreas1994;9:418. CrossRef

264. GroblewskiGE, WagnerAC, WilliamsJA. Cyclosporin A inhibits Ca2+/calmodulin‐dependent protein phosphatase and secretion in pancreatic acinar cells. J Biol Chem1994;269:15111.

265. IshiharaY, SakuraiT, KimuraT, et al.Exocytosis and movement of zymogen granules observed by VEC‐DIC microscopy in the pancreatic tissue en bloc. Am J Physiol Cell Physiol2000;279:C1177.

266. NemotoT, KimuraR, ItoK, et al.Sequential‐replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol2001;3:253. CrossRef

267. RothmanJE, WarrenG. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol1994;4:220. CrossRef

268. JahnR, FasshauerD. Molecular machines governing exocytosis of synaptic vesicles. Nature2012;490:201. CrossRef

269. JahnR, LangT, SudhofTC. Membrane fusion. Cell2003;112:519. CrossRef

270. MaC, SuL, SevenAB, et al.Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science2013;339:421. CrossRef

271. WangCC, NgCP, LuL, et al.A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell2004;7:359. CrossRef

272. GaisanoHY, SheuL, GrondinG, et al.The vesicle‐associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gastroenterology1996;111:1661. CrossRef

273. PickettJA, Campos‐ToimilM, ThomasP, et al.Identification of SNAREs that mediate zymogen granule exocytosis. Biochem Biophys Res Commun2007;359:599. CrossRef

274. GaisanoHY, GhaiM, MalkusPN, et al.Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell1996;7:2019. CrossRef

275. WengN, ThomasDD, GroblewskiGE. Pancreatic acinar cells express vesicle‐associated membrane protein 2‐ and 8‐specific populations of zymogen granules with distinct and overlapping roles in secretion. J Biol Chem2007;282:9635. CrossRef

276. BehrendorffN, DolaiS, HongW, et al.Vesicle‐associated membrane protein 8 (VAMP8) is a SNARE (soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor) selectively required for sequential granule‐to‐granule fusion. J Biol Chem2011;286:29627. CrossRef

277. GaisanoHY, LutzMP, LeserJ, et al.Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J Clin Invest2001;108:1597. CrossRef

278. Cosen‐BinkerLI, LamPP, BinkerMG, et al.Alcohol/cholecystokinin‐evoked pancreatic acinar basolateral exocytosis is mediated by protein kinase C alpha phosphorylation of Munc18c. J Biol Chem2007;282:13047. CrossRef

279. FalkowskiMA, ThomasDD, MessengerSW, et al.Expression, localization, and functional role for synaptotagmins in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol2011;301:G306. CrossRef

280. PadfieldPJ, PanesarN. Ca2+‐dependent amylase secretion from SLO‐permeabilized rat pancreatic acini requires diffusible cytosolic proteins. Am J Physiol1995;269:G647.

281. ThomasDD, TaftWB, KasparKM, et al.CRHSP‐28 regulates Ca2+‐stimulated secretion in permeabilized acinar cells. J Biol Chem2001;276:28866. CrossRef

282. FalkowskiMA, ThomasDD, GroblewskiGE. Complexin 2 modulates vesicle‐associated membrane protein (VAMP) 2‐regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem2010;285:35558. CrossRef

283. OhnishiH, ErnstSA, WysN, et al.Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am J Physiol1996;271:G531.

284. ValentijnJA, SenguptaD, GumkowskiFD, et al.Rab3D localizes to secretory granules in rat pancreatic acinar cells. Eur J Cell Biol1996;70:33.

285. OhnishiH, SamuelsonLC, YuleDI, et al.Overexpression of Rab3D enhances regulated amylase secretion from pancreatic acini of transgenic mice. J Clin Invest1997;100:3044. CrossRef

286. ChenX, WalkerAK, StrahlerJR, et al.Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics2006;5:306. CrossRef

287. ChenX, LiC, IzumiT, et al.Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem Biophys Res Commun2004;323:1157. CrossRef

288. SabbatiniME, ChenX, ErnstSA, et al.Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem2008;283:23884. CrossRef

289. MuallemS, KwiatkowskaK, XuX, et al.Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol1995;128:589. CrossRef

290. NemotoT, KojimaT, OshimaA, et al.Stabilization of exocytosis by dynamic F‐actin coating of zymogen granules in pancreatic acini. J Biol Chem2004;279:37544. CrossRef

291. BiY, WilliamsJA. A role for Rho and Rac in secretagogue‐induced amylase release by pancreatic acini. Am J Physiol Cell Physiol2005;289:C22. CrossRef

292. WrennRW, CreazzoTL, HermanLE. Beta 1 integrin ligation stimulates tyrosine phosphorylation of phospholipase C gamma 1 and elevates intracellular Ca2+ in pancreatic acinar cells. Biochem Biophys Res Commun1996;226:876. CrossRef

293. MalarkeyK, BelhamCM, PaulA, et al.The regulation of tyrosine kinase signalling pathways by growth factor and G‐protein‐coupled receptors. Biochem J1995;309:361. CrossRef

294. LutzMP, SutorSL, AbrahamRT, et al.A role for cholecystokinin‐stimulated protein tyrosine phosphorylation in regulated secretion by the pancreatic acinar cell. J Biol Chem1993;268:11119.

295. DuanRD, WilliamsJA. Cholecystokinin rapidly activates mitogen‐activated protein kinase in rat pancreatic acini. Am J Physiol1994;267:G401.

296. DabrowskiA, GroblewskiGE, SchaferC, et al.Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am J Physiol1997;273:C1472.

297. BragadoMJ, DabrowskiA, GroblewskiGE, et al.CCK activates p90rsk in rat pancreatic acini through protein kinase C. Am J Physiol1997;272:G401.

298. DabrowskiA, VanderKuurJA, Carter‐SuC, et al.Cholecystokinin stimulates formation of shc‐grb2 complex in rat pancreatic acinar cells through a protein kinase C‐dependent mechanism. J Biol Chem1996;271:27125. CrossRef

299. SevaC, Kowalski‐ChauvelA, BlanchetJS, et al.Gastrin induces tyrosine phosphorylation of Shc proteins and their association with the Grb2/Sos complex. FEBS Lett1996;378:74. CrossRef

300. Kowalski‐ChauvelA, PradayrolL, VaysseN, et al.Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3‐kinase. J Biol Chem1996;271:26356. CrossRef

301. DabrowskiA, GradyT, LogsdonCD, et al.Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J Biol Chem1996;271:5686. CrossRef

302. SchaferC, RossSE, BragadoMJ, et al.A role for the p38 mitogen‐activated protein kinase/Hsp 27 pathway in cholecystokinin‐induced changes in the actin cytoskeleton in rat pancreatic acini. J Biol Chem1998;273:24173. CrossRef

303. GradyT, DabrowskiA, WilliamsJA, et al.Stress‐activated protein kinase activation is the earliest direct correlate to the induction of secretagogue‐induced pancreatitis in rats. Biochem Biophys Res Commun1996;227:1. CrossRef

304. GroblewskiGE, GradyT, MehtaN, et al.Cholecystokinin stimulates heat shock protein 27 phosphorylation in rat pancreas both in vivo and in vitro. Gastroenterology1997;112:1354. CrossRef

305. SchaferC, WilliamsJA. Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease. J Gastroenterol2000;35:1.

306. GarciaLJ, RosadoJA, TsudaT, et al.CCK causes rapid tyrosine phosphorylation of p125FAK focal adhesion kinase and paxillin in rat pancreatic acini. Biochim Biophys Acta1997;1358:189. CrossRef

307. TashiroM, SamuelsonLC, LiddleRA, et al.Calcineurin mediates pancreatic growth in protease inhibitor‐treated mice. Am J Physiol Gastrointest Liver Physiol2004;286:G784. CrossRef

308. GurdaGT, CrozierSJ, JiB, et al.Regulator of calcineurin 1 controls growth plasticity of adult pancreas. Gastroenterology2010;139:609. 619 e1‐6. CrossRef

309. CrozierSJ, SansMD, GuoL, et al.Activation of the mTOR signalling pathway is required for pancreatic growth in protease‐inhibitor‐fed mice. J Physiol2006;573:775. CrossRef

310. CrozierSJ, SansMD, WangJY, et al.CCK‐independent mTORC1 activation during dietary protein‐induced exocrine pancreas growth. Am J Physiol Gastrointest Liver Physiol2010;299:G1154. CrossRef

311. CrozierSJ, D'AlecyLG, ErnstSA, et al.Molecular mechanisms of pancreatic dysfunction induced by protein malnutrition. Gastroenterology2009;137:1093. 1101 e1‐3. CrossRef

312. MacGregorIL, DeveneyC, WayLW, et al.The effect of acute hyperglycemia on meal‐stimulated gastric, biliary, and pancreatic secretion, and serum gastrin. Gastroenterology1976;70:197.

313. DiMagnoEP, GoVL, SummerskillHJ. Intraluminal and postabsorptive effects of amino acids on pancreatic enzyme secretion. J Lab Clin Med1973;82:241.

314. DyckWP, RudickJ, HoexterB, et al.Influence of glucagon on pancreatic exocrine secretion. Gastroenterology1969;56:531.

315. KonturekSJ, TaslerJ, ObtulowiczW. Characteristics of inhibition of pancreatic secretion by glucagon. Digestion1974;10:138. CrossRef

316. SingerMV, TiscorniaOM, Mendes de OliveiroJP, et al.Effect of glucagon on canine exocrine pancreatic secretion stimulated by a test meal. Can J Physiol Pharmacol1978;56:1. CrossRef

317. BrubakerPL, GronauKA, AsaSL, et al.Nutrient and peptide regulation of somatostatin‐28 secretion from intestinal cultures. Endocrinology1998;139:148.

318. DollingerHC, RaptisS, PfeifferEF. Effects of somatostatin on exocrine and endocrine pancreatic function stimulated by intestinal hormones in man. Horm Metab Res1976;8:74. CrossRef

319. IppE, DobbsRE, ArimuraA, et al.Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin‐cholecystokinin, and tolbutamide. J Clin Invest1977;60:760. CrossRef

320. LiaoZ, LiZS, LuY, et al.Microinjection of exogenous somatostatin in the dorsal vagal complex inhibits pancreatic secretion via somatostatin receptor‐2 in rats. Am J Physiol Gastrointest Liver Physiol2007;292:G746. CrossRef

321. HunyadyB, HipkinRW, SchonbrunnA, et al.Immunohistochemical localization of somatostatin receptor SST2A in the rat pancreas. Endocrinology1997;138:2632. CrossRef

322. MaouyoD, MorissetJ. Amazing pancreas: specific regulation of pancreatic secretion of individual digestive enzymes in rats. Am J Physiol1995;268:E349.

323. HarperAA. The control of pancreatic secretion. Gut1972;13:308. CrossRef

324. DyckWP. Influence of intrajejunal glucose on pancreatic exocrine function in man. Gastroenterology1971;60:864.

325. BiedzinskiTM, BatailleD, DevauxMA, et al.The effect of oxyntomodulin (glucagon‐37) and glucagon on exocrine pancreatic secretion in the conscious rat. Peptides1987;8:967. CrossRef

326. KemenyLV, HegyiP, RakonczayZJr, et al.Substance P inhibits pancreatic ductal bicarbonate secretion via neurokinin receptors 2 and 3 in the guinea pig exocrine pancreas. Pancreas2011;40:793. CrossRef

327. OwyangC, GreenL, RaderD. Colonic inhibition of pancreatic and biliary secretion. Gastroenterology1983;84:470.

328. HarperAA, HoodAJ, MushensJ, et al.Inhibition of external pancreatic secretion by intracolonic and intraileal infusions in the cat. J Physiol1979;292:445. CrossRef

329. HarperAA, HoodAJ, MushensJ, et al.Pancreotone, an inhibitor of pancreatic secretion in extracts of ileal and colonic mucosa. J Physiol1979;292:455. CrossRef

330. AdrianTE, FerriGL, Bacarese‐HamiltonAJ, et al.Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology1985;89:1070.

331. PappasTN, DebasHT, GotoY, et al.Peptide YY inhibits meal‐stimulated pancreatic and gastric secretion. Am J Physiol1985;248:G118.

332. TohnoH, SarrMG, DiMagnoEP. Intraileal carbohydrate regulates canine postprandial pancreaticobiliary secretion and upper gut motility. Gastroenterology1995;109:1977. CrossRef

333. WettergrenA, WojdemannM, HolstJJ. Glucagon‐like peptide‐1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol1998;275:G984.

334. AniniY, JarrousseC, ChariotJ, et al.Oxyntomodulin inhibits pancreatic secretion through the nervous system in rats. Pancreas2000;20:348. CrossRef

335. LarssonLI, SundlerF, HakansonR. Pancreatic polypeptide – a postulated new hormone: identification of its cellular storage site by light and electron microscopic immunocytochemistry. Diabetologia1976;12:211. CrossRef

336. SchwartzTW. Pancreatic polypeptide: a hormone under vagal control. Gastroenterology1983;85:1411.

337. LinTM, EvansDC, ChanceRE, et al.Bovine pancreatic peptide: action on gastric and pancreatic secretion in dogs. Am J Physiol1977;232:E311.

338. PutnamWS, LiddleRA, WilliamsJA. Inhibitory regulation of rat exocrine pancreas by peptide YY and pancreatic polypeptide. Am J Physiol1989;256:G698.

339. JungG, LouieDS, OwyangC. Pancreatic polypeptide inhibits pancreatic enzyme secretion via a cholinergic pathway. Am J Physiol1987;253:G706.

340. WhitcombDC, PuccioAM, VignaSR, et al.Distribution of pancreatic polypeptide receptors in the rat brain. Brain Res1997;760:137. CrossRef

341. WhitcombDC, Puccio A, LeiferJM, et al.Pancreatic polypeptide (PP) and peptide YY (PYY) mRNA in the brainstem of rats detected by reverse‐transcriptase PCR (RT‐PCR). Abstr Soc Neurosci1994;20:1373.

342. OkumuraT, PappasTN, TaylorIL. Pancreatic polypeptide microinjection into the dorsal motor nucleus inhibits pancreatic secretion in rats. Gastroenterology1995;108:1517. CrossRef

343. BrowningKN, ColemanFH, TravagliRA. Effects of pancreatic polypeptide on pancreas‐projecting rat dorsal motor nucleus of the vagus neurons. Am J Physiol Gastrointest Liver Physiol2005;289:G209. CrossRef

344. WileyJ, OwyangC. Somatostatin inhibits cAMP‐mediated cholinergic transmission in the myenteric plexus. Am J Physiol1987;253:G607.

345. LiY, KolligsF, OwyangC. Mechanism of action of calcitonin gene‐related peptide in inhibiting pancreatic enzyme secretion in rats. Gastroenterology1993;105:194.

346. LouieDS, ChenHT, OwyangC. Inhibition of exocrine pancreatic secretion by opiates is mediated by suppression of cholinergic transmission: characterization of receptor subtypes. J Pharmacol Exp Ther1988;246:132.

347. HerzigKH, LouieDS, TatemotoK, et al.Pancreastatin inhibits pancreatic enzyme secretion by presynaptic modulation of acetylcholine release. Am J Physiol1992;262:G113.

348. MessmerB, ZimmermanFG, LenzHJ. Regulation of exocrine pancreatic secretion by cerebral TRH and CGRP: role of VIP, muscarinic, and adrenergic pathways. Am J Physiol1993;264:G237.

349. LiY, JiangYC, OwyangC. Central CGRP inhibits pancreatic enzyme secretion by modulation of vagal parasympathetic outflow. Am J Physiol1998;275:G957.

350. LymanRL. The effect of raw soybean meal and trypsin inhibitor diets on the intestinal and pancreatic nitrogen in the rat. J Nutr1957;62:285.

351. LouieDS, LiangJP, OwyangC. Characterization of a new CCK antagonist, L364,718: in vitro and in vivo studies. Am J Physiol1988;255:G261.

352. HerzigKH, SchonI, TatemotoK, et al.Diazepam binding inhibitor is a potent cholecystokinin‐releasing peptide in the intestine. Proc Natl Acad Sci U S A1996;93:7927. CrossRef

353. SpannagelAW, GreenGM, GuanD, et al.Purification and characterization of a luminal cholecystokinin‐releasing factor from rat intestinal secretion. Proc Natl Acad Sci U S A1996;93:4415. CrossRef

354. SteyaertH, TononMC, TongY, et al.Distribution and characterization of endogenous benzodiazepine receptor ligand (endozepine)‐like peptides in the rat gastrointestinal tract. Endocrinology1991;129:2101. CrossRef

355. IwaiK, FukuokaS, FushikiT, et al.Purification and sequencing of a trypsin‐sensitive cholecystokinin‐releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem1987;262:8956.

356. SlaffJ, JacobsonD, TillmanCR, et al.Protease‐specific suppression of pancreatic exocrine secretion. Gastroenterology1984;87:44.

357. AdlerG, RauschU, WeidenbachF, et al.General and selective inhibition of pancreatic enzyme discharge using a proteinase inhibitor (FOY‐305). Klin Wochenschr1984;62:406. CrossRef

358. OwyangC, Achem‐KaramSR, VinikAI. Pancreatic polypeptide and intestinal migrating motor complex in humans. Effect of pancreaticobiliary secretion. Gastroenterology1983;84:10.

359. KeaneFB, DiMagnoEP, DozoisRR, et al.Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide, and motilin. Gastroenterology1980;78:310.

360. LienerIE, GoodaleRL, DeshmukhA, et al.Effect of a trypsin inhibitor from soybeans (Bowman‐Birk) on the secretory activity of the human pancreas. Gastroenterology1988;94:419.

361. NakamuraR, MiyasakaK, KuyamaY, et al.Luminal bile regulates cholecystokinin release in conscious rats. Dig Dis Sci1990;35:55. CrossRef

362. IsakssonG, IhseI. Pain reduction by an oral pancreatic enzyme preparation in chronic pancreatitis. Dig Dis Sci1983;28:97. CrossRef

363. SlaffJI, WolfeMM, ToskesPP. Elevated fasting cholecystokinin levels in pancreatic exocrine impairment: evidence to support feedback regulation. J Lab Clin Med1985;105:282.

364. DiMagnoEP, HendricksJC, GoVL, et al.Relationships among canine fasting pancreatic and biliary secretions, pancreatic duct pressure, and duodenal phase III motor activity–Boldyreff revisited. Dig Dis Sci1979;24:689. CrossRef

365. MageeDF, NaruseS. The role of motilin in periodic interdigestive pancreatic secretion in dogs. J Physiol1984;355:441. CrossRef

366. LeeKY, ShiratoriK, ChenYF, et al.A hormonal mechanism for the interdigestive pancreatic secretion in dogs. Am J Physiol1986;251:G759.

367. SarlesH, DaniR, PrezelinG, et al.Cephalic phase of pancreatic secretion in man. Gut1968;9:214. CrossRef

368. DefilippiC, SolomonTE, ValenzuelaJE. Pancreatic secretory response to sham feeding in humans. Digestion1982;23:217. CrossRef

369. AlphinRS, LinTM. Effect of feeding and sham feeding on pancreatic secretion of the rat. Am J Physiol1959;197:260.

370. BergmanRN, MillerRE. Direct enhancement of insulin secretion by vagal stimulation of the isolated pancreas. Am J Physiol1973;225:481.

371. FurukawaN, OkadaH. Effects of stimulation of the hypothalamic area on pancreatic exocrine secretion in dogs. Gastroenterology1989;97:1534.

372. RozeC, DubrasquetM, ChariotJ, et al.Central inhibition of basal pancreatic and gastric secretions by beta‐endorphin in rats. Gastroenterology1980;79:659.

373. VagneM, GrossmanMI. Gastric and pancreatic secretion in response to gastric distention in dogs. Gastroenterology1969;57:300.

374. WhiteTT, McAR, MageeDF. The effect of gastric distension on duodenal aspirates in man. Gastroenterology1963;44:48.

375. WhiteTT, LundhG, MageeDF. Evidence for the existence of a gastropancreatic reflex. Am J Physiol1960;198:725.

376. FreemanHJ, KimYS. Digestion and absorption of protein. Annu Rev Med1978;29:99. CrossRef

377. HamoshM, KlaevemanHL, WolfRO, et al.Pharyngeal lipase and digestion of dietary triglyceride in man. J Clin Invest1975;55:908. CrossRef

378. GoVL, HofmannAF, SummerskillWH. Pancreozymin bioassay in man based on pancreatic enzyme secretion: potency of specific amino acids and other digestive products. J Clin Invest1970;49:1558. CrossRef

379. MalageladaJR, GoVL, DiMagnoEP, et al.Interactions between intraluminal bile acids and digestive products on pancreatic and gallbladder function. J Clin Invest1973;52:2160. CrossRef

380. ByrnesDJ, HendersonL, BorodyT, et al.Radioimmunoassay of cholecystokinin in human plasma. Clin Chim Acta1981;111:81. CrossRef

381. IzzoRS, BruggeWR, PraissmanM. Immunoreactive cholecystokinin in human and rat plasma: correlation of pancreatic secretion in response to CCK. Regul Pept1984;9:21. CrossRef

382. SharmaKN, NassetES. Electrical activity in mesenteric nerves after perfusion of gut lumen. Am J Physiol1962;202:725.

383. SingerMV, SolomonTE, WoodJ, et al.Latency of pancreatic enzyme response to intraduodenal stimulants. Am J Physiol1980;238:G23.

384. HoltermullerKH, MallageladaJR, McCallJT, et al.Pancreatic, gallbladder, and gastric responses to intraduodenal calcium perfusion in man. Gastroenterology1976;70:693.

385. InoueK, FriedGM, WienerI, et al.Effect of divalent cations on gastrointestinal hormone release and exocrine pancreatic secretion in dogs. Am J Physiol1985;248:G28.