Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Neoplasia of the gastrointestinal tract

1. PleasanceED, StephensPJ, O'MearaS, et al.A small‐cell lung cancer genome with complex signatures of tobacco exposure. Nature2010;463:184. CrossRef

2. JonesS, ZhangX, ParsonsDW, et al.Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science2008;321:1801. CrossRef

3. CampbellPJ, YachidaS, MudieLJ, et al.The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature2010;467:1109. CrossRef

4. MacConaillLE, GarrawayLA. Clinical implications of the cancer genome. J Clin Oncol2010;28:5219. CrossRef

5. BaylinSB, JonesPA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer2011;11:726. CrossRef

6. BerdascoM, EstellerM. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell2010;19:698. CrossRef

7. DominissiniD, Moshitch‐MoshkovitzS, SchwartzS, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq. Nature2012;485:201. CrossRef

8. MeyerKD, SaletoreY, ZumboP, et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell2012;149:1635. CrossRef

9. MeyersonM, GabrielS, GetzG. Advances in understanding cancer genomes through second‐generation sequencing. Nat Rev Genet2010;11:685. CrossRef

10. SjoblomT, JonesS, WoodLD, et al.The consensus coding sequences of human breast and colorectal cancers. Science2006;314:268. CrossRef

11. WoodLD, ParsonsDW, JonesS, et al.The genomic landscapes of human breast and colorectal cancers. Science2007;318:1108. CrossRef

12. GarrawayLA, LanderES. Lessons from the cancer genome. Cell2013;153:17. CrossRef

13. CarterH, ChenS, IsikL, et al.Cancer‐specific high‐throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res2009;69:6660. CrossRef

14. ChapmanMA, LawrenceMS, KeatsJJ, et al.Initial genome sequencing and analysis of multiple myeloma. Nature2011;471:467. CrossRef

15. DeesND, ZhangQ, KandothC, et al.MuSiC: identifying mutational significance in cancer genomes. Genome Res2012;22:1589. CrossRef

16. HodisE, WatsonIR, KryukovGV, et al.A landscape of driver mutations in melanoma. Cell2012;150:251. CrossRef

17. ParmigianiG, BocaS, LinJ, et al.Design and analysis issues in genome‐wide somatic mutation studies of cancer. Genomics2009;93:17. CrossRef

18. YounA, SimonR. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics2011;27:175. CrossRef

19. LawrenceMS, StojanovP, PolakP, et al.Mutational heterogeneity in cancer and the search for new cancer‐associated genes. Nature2013;499:214. CrossRef

20. KaelinWGJr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer2005;5:689. CrossRef

21. HoglundM, GisselssonD, SallT, et al.Coping with complexity. multivariate analysis of tumor karyotypes. Cancer Genet Cytogenet2002;135:103. CrossRef

22. NowellPC. The clonal evolution of tumor cell populations. Science1976;194:23. CrossRef

23. SuvaML, RiggiN, BernsteinBE. Epigenetic reprogramming in cancer. Science2013;339:1567. CrossRef

24. BaisseB, BouzoureneH, SaragaEP, et al.Intratumor genetic heterogeneity in advanced human colorectal adenocarcinoma. Int J Cancer2001;93:346. CrossRef

25. LosiL, BaisseB, BouzoureneH, et al.Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis2005;26:916. CrossRef

26. SottorivaA, SpiteriI, ShibataD, et al.Single‐molecule genomic data delineate patient‐specific tumor profiles and cancer stem cell organization. Cancer Res2013;73:41. CrossRef

27. YachidaS, JonesS, BozicI, et al.Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature2010;467:1114. CrossRef

28. GerlingerM, RowanAJ, HorswellS, et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med2012;366:883. CrossRef

29. NavinN, KendallJ, TrogeJ, et al.Tumour evolution inferred by single‐cell sequencing. Nature2011;472:90. CrossRef

30. ShahSP, MorinRD, KhattraJ, et al.Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature2009;461:809. CrossRef

31. XuX, HouY, YinX, et al.Single‐cell exome sequencing reveals single‐nucleotide mutation characteristics of a kidney tumor. Cell2012;148:886. CrossRef

32. Nik‐ZainalS, Van LooP, WedgeDC, et al.The life history of 21 breast cancers. Cell2012;149:994. CrossRef

33. WeisbergE, ManleyPW, Cowan‐JacobSW, et al.Second generation inhibitors of BCR‐ABL for the treatment of imatinib‐resistant chronic myeloid leukaemia. Nat Rev Cancer2007;7:345. CrossRef

34. GrotheyA, Van CutsemE, SobreroA, et al.Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo‐controlled, phase 3 trial. Lancet2013;381:303. CrossRef

35. Van CutsemE, TaberneroJ, LakomyR, et al.Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin‐based regimen. J Clin Oncol2012;30:3499. CrossRef

36. AlbertsSR, SargentDJ, NairS, et al.Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA2012;307:1383. CrossRef

37. CrosbyT, HurtCN, FalkS, et al.Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol2013;14:627. CrossRef

38. de GramontA, Van CutsemE, SchmollHJ, et al.Bevacizumab plus oxaliplatin‐based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol2012;13:1225. CrossRef

39. AllegraCJ, YothersG, O'ConnellMJ, et al.Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C‐08. J Clin Oncol2011;29:11. CrossRef

40. VogelsteinB, PapadopoulosN, VelculescuVE, et al.Cancer genome landscapes. Science2013;339:1546. CrossRef

41. HanahanD, WeinbergRA. Hallmarks of cancer: the next generation. Cell2011;144:646. CrossRef

42. CiardielloF, TortoraG. EGFR antagonists in cancer treatment. N Engl J Med2008;358:1160. CrossRef

43. YardenY. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer2001;37(Suppl 4):S3. CrossRef

44. YardenY, SliwkowskiMX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol2001;2:127. CrossRef

45. YoshidaK, KuniyasuH, YasuiW, et al.Expression of growth factors and their receptors in human esophageal carcinomas: regulation of expression by epidermal growth factor and transforming growth factor alpha. J Cancer Res Clin Oncol1993;119:401. CrossRef

46. EspinozaLA, ToneLG, NetoJB, et al.Enhanced TGFalpha‐EGFR expression and P53 gene alterations contributes to gastric tumors aggressiveness. Cancer Lett2004;212:33. CrossRef

47. CiardielloF, KimN, SaekiT, et al.Differential expression of epidermal growth factor‐related proteins in human colorectal tumors. Proc Natl Acad Sci U S A1991;88:7792. CrossRef

48. JacobsB, De RoockW, PiessevauxH, et al.Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol2009;27:5068. CrossRef

49. MooreMJ, GoldsteinD, HammJ, et al.Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol2007;25:1960. CrossRef

50. AntonacopoulouAG, TsamandasAC, PetsasT, et al.EGFR, HER‐2 and COX‐2 levels in colorectal cancer. Histopathology2008;53:698. CrossRef

51. McKayJA, MurrayLJ, CurranS, et al.Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer2002;38:2258. CrossRef

52. SpanoJP, LagorceC, AtlanD, et al.Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol2005;16:102. CrossRef

53. YenLC, UenYH, WuDC, et al.Activating KRAS mutations and overexpression of epidermal growth factor receptor as independent predictors in metastatic colorectal cancer patients treated with cetuximab. Ann Surg2010;251:254. CrossRef

54. ItakuraY, SasanoH, ShigaC, et al.Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer1994;74:795. CrossRef

55. LangerR, Von RahdenBH, NahrigJ, et al.Prognostic significance of expression patterns of c‐erbB‐2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol2006;59:631. CrossRef

56. WangKL, WuTT, ChoiIS, et al.Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Cancer2007;109:658. CrossRef

57. GaliziaG, LietoE, OrdituraM, et al.Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery. World J Surg2007;31:1458. CrossRef

58. KimMA, LeeHS, LeeHE, et al.EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology2008;52:738. CrossRef

59. LemoineNR, JainS, SilvestreF, et al.Amplification and overexpression of the EGF receptor and c‐erbB‐2 proto‐oncogenes in human stomach cancer. Br J Cancer1991;64:79. CrossRef

60. YasuiW, SumiyoshiH, HataJ, et al.Expression of epidermal growth factor receptor in human gastric and colonic carcinomas. Cancer Res1988;48:137.

61. BuckleyAF, BurgartLJ, SahaiV, et al.Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma. Am J Clin Pathol2008;129:245. CrossRef

62. El‐BassiouniA, NosseirM, ZoheiryM, et al.Immunohistochemical expression of CD95 (Fas), c‐myc and epidermal growth factor receptor in hepatitis C virus infection, cirrhotic liver disease and hepatocellular carcinoma. APMIS2006;114:420. CrossRef

63. ItoY, TakedaT, SakonM, et al.Expression and clinical significance of erb‐B receptor family in hepatocellular carcinoma. Br J Cancer2001;84:1377. CrossRef

64. CunninghamD, HumbletY, SienaS, et al.Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan‐refractory metastatic colorectal cancer. N Engl J Med2004;351:337. CrossRef

65. HechtJR, MitchellE, NeubauerMA, et al.Lack of correlation between epidermal growth factor receptor status and response to Panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res2010;16:2205. CrossRef

66. ChungKY, ShiaJ, KemenyNE, et al.Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol2005;23:1803. CrossRef

67. MaughanTS, AdamsRA, SmithCG, et al.Addition of cetuximab to oxaliplatin‐based first‐line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet2011;377:2103. CrossRef

68. MoroniM, Sartore‐BianchiA, VeroneseS, et al.EGFR FISH in colorectal cancer: what is the current reality?Lancet Oncol2008;9:402. CrossRef

69. MoroniM, VeroneseS, BenvenutiS, et al.Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol2005;6:279. CrossRef

70. Sartore‐BianchiA, MoroniM, VeroneseS, et al.Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol2007;25:3238. CrossRef

71. Sartore‐BianchiA, FieuwsS, VeroneseS, et al.Standardisation of EGFR FISH in colorectal cancer: results of an international interlaboratory reproducibility ring study. J Clin Pathol2012;65:218. CrossRef

72. BosJL, FearonER, HamiltonSR, et al.Prevalence of ras gene mutations in human colorectal cancers. Nature1987;327:293. CrossRef

73. RothAD, TejparS, DelorenziM, et al.Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC‐3, EORTC 40993, SAKK 60‐00 trial. J Clin Oncol2010;28:466. CrossRef

74. AlmogueraC, ShibataD, ForresterK, et al.Most human carcinomas of the exocrine pancreas contain mutant c‐K‐ras genes. Cell1988;53:549. CrossRef

75. RozenblumE, SchutteM, GogginsM, et al.Tumor‐suppressive pathways in pancreatic carcinoma. Cancer Res1997;57:1731.

76. CherfilsJ, ZeghoufM. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev2013;93:269. CrossRef

77. AmadoRG, WolfM, PeetersM, et al.Wild‐type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol2008;26:1626. CrossRef

78. BaselgaJ, RosenN. Determinants of RASistance to anti‐epidermal growth factor receptor agents. J Clin Oncol2008;26:1582. CrossRef

79. BokemeyerC, BondarenkoI, MakhsonA, et al.Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first‐line treatment of metastatic colorectal cancer. J Clin Oncol2009;27:663. CrossRef

80. DahabrehIJ, TerasawaT, CastaldiPJ, et al.Systematic review: anti‐epidermal growth factor receptor treatment effect modification by KRAS mutations in advanced colorectal cancer. Ann Intern Med2011;154:37. CrossRef

81. Van CutsemE, KohneCH, HitreE, et al.Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med2009;360:1408. CrossRef

82. DiazLAJr, WilliamsRT, WuJ, et al.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature2012;486:537.

83. MisaleS, YaegerR, HoborS, et al.Emergence of KRAS mutations and acquired resistance to anti‐EGFR therapy in colorectal cancer. Nature2012;486:532.

84. De RoockW, JonkerDJ, Di NicolantonioF, et al.Association of KRAS p.G13D mutation with outcome in patients with chemotherapy‐refractory metastatic colorectal cancer treated with cetuximab. JAMA2010;304:1812. CrossRef

85. TejparS, CelikI, SchlichtingM, et al.Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first‐line chemotherapy with or without cetuximab. J Clin Oncol2012;30:3570. CrossRef

86. CaseyPJ, SolskiPA, DerCJ, et al.p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci U S A1989;86:8323. CrossRef

87. ChandraA, GreccoHE, PisupatiV, et al.The GDI‐like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol2012;14:148. CrossRef

88. ZimmermannG, PapkeB, IsmailS, et al.Small molecule inhibition of the KRAS‐PDEdelta interaction impairs oncogenic KRAS signalling. Nature2013;497:638. CrossRef

89. BarbieDA, TamayoP, BoehmJS, et al.Systematic RNA interference reveals that oncogenic KRAS‐driven cancers require TBK1. Nature2009;462:108. CrossRef

90. RajagopalanH, BardelliA, LengauerC, et al.Tumorigenesis: RAF/RAS oncogenes and mismatch‐repair status. Nature2002;418:934. CrossRef

91. TolJ, NagtegaalID, PuntCJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med2009;361:98. CrossRef

92. ForbesSA, BhamraG, BamfordS, et al.The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet2008;Chapter 10:Unit 10.11.

93. DaviesH, BignellGR, CoxC, et al.Mutations of the BRAF gene in human cancer. Nature2002;417:949. CrossRef

94. FlahertyKT, PuzanovI, KimKB, et al.Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med2010;363:809. CrossRef

95. KopetzS, DesaiJ, ChanE, et al.PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol2010;28:abstract 3534. CrossRef

96. ChengAL, KangYK, ChenZ, et al.Efficacy and safety of sorafenib in patients in the Asia‐Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double‐blind, placebo‐controlled trial. Lancet Oncol2009;10:25. CrossRef

97. LlovetJM, RicciS, MazzaferroV, et al.Sorafenib in advanced hepatocellular carcinoma. N Engl J Med2008;359:378. CrossRef

98. BennounaJ, LangI, Valladares‐AyerbesM, et al.A Phase II, open‐label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY‐142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs2011;29:1021. CrossRef

99. LorussoPM, AdjeiAA, VarterasianM, et al.Phase I and pharmacodynamic study of the oral MEK inhibitor CI‐1040 in patients with advanced malignancies. J Clin Oncol2005;23:5281. CrossRef

100. RinehartJ, AdjeiAA, LorussoPM, et al.Multicenter phase II study of the oral MEK inhibitor, CI‐1040, in patients with advanced non‐small‐cell lung, breast, colon, and pancreatic cancer. J Clin Oncol2004;22:4456. CrossRef

101. De RoockW, ClaesB, BernasconiD, et al.Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy‐refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol2010;11:753. CrossRef

102. NoshoK, KawasakiT, OhnishiM, et al.PIK3CA mutation in colorectal cancer: relationship with genetic and epigenetic alterations. Neoplasia2008;10:534. CrossRef

103. SamuelsY, WangZ, BardelliA, et al.High frequency of mutations of the PIK3CA gene in human cancers. Science2004;304:554. CrossRef

104. VelhoS, OliveiraC, FerreiraA, et al.The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer2005;41:1649. CrossRef

105. LeeJW, SoungYH, KimSY, et al.PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene2005;24:1477. CrossRef

106. LiVS, WongCW, ChanTL, et al.Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer2005;5:29. CrossRef

107. ByunDS, ChoK, RyuBK, et al.Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int J Cancer2003;104:318. CrossRef

108. NaguibA, CookeJC, HapperfieldL, et al.Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors. BMC Cancer2011;11:123. CrossRef

109. ZhouXP, LoukolaA, SalovaaraR, et al.PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol2002;161:439. CrossRef

110. SalmenaL, CarracedoA, PandolfiPP. Tenets of PTEN tumor suppression. Cell2008;133:403. CrossRef

111. TrotmanLC, NikiM, DotanZA, et al.Pten dose dictates cancer progression in the prostate. PLoS Biol2003;1:E59. CrossRef

112. YingH, ElpekKG, VinjamooriA, et al.PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF‐kappaB‐cytokine network. Cancer Discov2011;1:158. CrossRef

113. IliopoulosD, JaegerSA, HirschHA, et al.STAT3 activation of miR‐21 and miR‐181b‐1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell2010;39:493. CrossRef

114. MengF, HensonR, LangM, et al.Involvement of human micro‐RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology2006;130:2113. CrossRef

115. MengF, HensonR, Wehbe‐JanekH, et al.MicroRNA‐21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology2007;133:647. CrossRef

116. VoliniaS, CalinGA, LiuCG, et al.A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A2006;103:2257. CrossRef

117. LuJ, JeongHW, KongN, et al.Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE2009;4:e5577. CrossRef

118. YongKJ, GaoC, LimJS, et al.Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med2013;368:2266. CrossRef

119. RustgiAK. The genetics of hereditary colon cancer. Genes Dev2007;21:2525. CrossRef

120. TanMH, MesterJL, NgeowJ, et al.Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res2012;18:400. CrossRef

121. YaoJC, ShahMH, ItoT, et al.Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med2011;364:514. CrossRef

122. PrahalladA, SunC, HuangS, et al.Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature2012;483:100. CrossRef

123. CarracedoA, MaL, Teruya‐FeldsteinJ, et al.Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K‐dependent feedback loop in human cancer. J Clin Invest2008;118:3065.

124. SerraV, ScaltritiM, PrudkinL, et al.PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2‐overexpressing breast cancer. Oncogene2011;30:2547. CrossRef

125. TurkeAB, SongY, CostaC, et al.MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res2012;72:3228. CrossRef

126. EngelmanJA, ChenL, TanX, et al.Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med2008;14:1351. CrossRef

127. HoeflichKP, O'BrienC, BoydZ, et al.In vivo antitumor activity of MEK and phosphatidylinositol 3‐kinase inhibitors in basal‐like breast cancer models. Clin Cancer Res2009;15:4649. CrossRef

128. SheQB, HalilovicE, YeQ, et al.4E‐BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell2010;18:39. CrossRef

129. WeeS, JaganiZ, XiangKX, et al.PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res2009;69:4286. CrossRef

130. Rodriguez‐VicianaP, WarnePH, DhandR, et al.Phosphatidylinositol‐3‐OH kinase as a direct target of Ras. Nature1994;370:527. CrossRef

131. Rodriguez‐VicianaP, WarnePH, VanhaesebroeckB, et al.Activation of phosphoinositide 3‐kinase by interaction with Ras and by point mutation. EMBO J1996;15:2442.

132. BallifBA, RouxPP, GerberSA, et al.Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase‐signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci U S A2005;102:667. CrossRef

133. MaL, ChenZ, Erdjument‐BromageH, et al.Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell2005;121:179. CrossRef

134. BrittenCD. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol2013;71:1395. CrossRef

135. OwonikokoTK, KhuriFR. Targeting the PI3K/AKT/mTOR pathway. Am Soc Clin Oncol Educ Book2013;2013:395. CrossRef

136. LeakeI. Cancer: importance of oncofetal gene, SALL4, in a subset of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol2013;10:441. CrossRef

137. GravalosC, JimenoA. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol2008;19:1523. CrossRef

138. PrinsMJ, RuurdaJP, van DiestPJ, et al.The significance of the HER‐2 status in esophageal adenocarcinoma for survival: an immunohistochemical and an in situ hybridization study. Ann Oncol2013;24:1290. CrossRef

139. BangYJ, Van CutsemE, FeyereislovaA, et al.Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2‐positive advanced gastric or gastro‐oesophageal junction cancer (ToGA): a phase 3, open‐label, randomised controlled trial. Lancet2010;376:687. CrossRef

140. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature2012;487:330. CrossRef

141. BehrensJ, JerchowBA, WurteleM, et al.Functional interaction of an axin homolog, conductin, with beta‐catenin, APC, and GSK3beta. Science1998;280:596. CrossRef

142. MajorMB, CampND, BerndtJD, et al.Wilms tumor suppressor WTX negatively regulates WNT/beta‐catenin signaling. Science2007;316:1043. CrossRef

143. KorinekV, BarkerN, MorinPJ, et al.Constitutive transcriptional activation by a beta‐catenin‐Tcf complex in APC‐/‐ colon carcinoma. Science1997;275:1784. CrossRef

144. HeTC, SparksAB, RagoC, et al.Identification of c‐MYC as a target of the APC pathway. Science1998;281:1509. CrossRef

145. TetsuO, McCormickF. Beta‐catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature1999;398:422. CrossRef

146. RosenbluhJ, NijhawanD, CoxAG, et al.beta‐Catenin‐driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell2012;151:1457. CrossRef

147. BarryER, MorikawaT, ButlerBL, et al.Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature2013;493:106. CrossRef

148. KinzlerKW, NilbertMC, SuLK, et al.Identification of FAP locus genes from chromosome 5q21. Science1991;253:661. CrossRef

149. NishishoI, NakamuraY, MiyoshiY, et al.Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science1991;253:665. CrossRef

150. LamlumH, IlyasM, RowanA, et al.The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's “two‐hit” hypothesis. Nat Med1999;5:1071. CrossRef

151. KnudsonAGJr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A1971;68:820. CrossRef

152. PowellSM, ZilzN, Beazer‐BarclayY, et al.APC mutations occur early during colorectal tumorigenesis. Nature1992;359:235. CrossRef

153. MiyakiM, KonishiM, Kikuchi‐YanoshitaR, et al.Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res1994;54:3011.

154. MiyoshiY, NagaseH, AndoH, et al.Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet1992;1:229. CrossRef

155. TakayamaT, OhiM, HayashiT, et al.Analysis of K‐ras, APC, and beta‐catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology2001;121:599. CrossRef

156. EstellerM, SparksA, ToyotaM, et al.Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res2000;60:4366.

157. MorinPJ, SparksAB, KorinekV, et al.Activation of beta‐catenin‐Tcf signaling in colon cancer by mutations in beta‐catenin or APC. Science1997;275:1787. CrossRef

158. SparksAB, MorinPJ, VogelsteinB, et al.Mutational analysis of the APC/beta‐catenin/Tcf pathway in colorectal cancer. Cancer Res1998;58:1130.

159. SeshagiriS, StawiskiEW, DurinckS, et al.Recurrent R‐spondin fusions in colon cancer. Nature2012;488:660. CrossRef

160. LiuW, DongX, MaiM, et al.Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta‐catenin/TCF signalling. Nat Genet2000;26:146. CrossRef

161. MorrisLG, KaufmanAM, GongY, et al.Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet2013;45:253. CrossRef

162. WhittakerS, MaraisR, ZhuAX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene2010;29:4989. CrossRef

163. PezF, LopezA, KimM, et al.Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol2013;59:1107. CrossRef

164. GuichardC, AmaddeoG, ImbeaudS, et al.Integrated analysis of somatic mutations and focal copy‐number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet2012;44:694. CrossRef

165. KanZ, ZhengH, LiuX, et al.Whole genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res2013;23:1422. CrossRef

166. WangK, LimHY, ShiS, et al.Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology2013;58:706. CrossRef

167. TeufelA, MarquardtJU, GallePR. Next generation sequencing of HCC from European and Asian HCC cohorts. Back to p53 and Wnt/beta‐catenin. J Hepatol2013;58:622. CrossRef

168. AnastasJN, MoonRT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer2013;13:11. CrossRef

169. ZhangL, RenX, AltE, et al.Chemoprevention of colorectal cancer by targeting APC‐deficient cells for apoptosis. Nature2010;464:1058. CrossRef

170. BrunetA, BonniA, ZigmondMJ, et al.Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell1999;96:857. CrossRef

171. EssersMA, de Vries‐SmitsLM, BarkerN, et al.Functional interaction between beta‐catenin and FOXO in oxidative stress signaling. Science2005;308:1181. CrossRef

172. JanssenKP, AlbericiP, FsihiH, et al.APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology2006;131:1096. CrossRef

173. KinchMS, ClarkGJ, DerCJ, et al.Tyrosine phosphorylation regulates the adhesions of ras‐transformed breast epithelia. J Cell Biol1995;130:461. CrossRef

174. SchwitallaS, FingerleAA, CammareriP, et al.Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem‐cell‐like properties. Cell2013;152:25. CrossRef

175. TenbaumSP, Ordonez‐MoranP, PuigI, et al.beta‐catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med2012;18:892. CrossRef

176. LaneDP. Cancer. p53, guardian of the genome. Nature1992;358:15. CrossRef

177. VousdenKH, PrivesC. Blinded by the light: the growing complexity of p53. Cell2009;137. CrossRef

178. LevineAJ, MomandJ, FinlayCA. The p53 tumour suppressor gene. Nature1991;351:453. CrossRef

179. SoussiT. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Adv Cancer Res2011;110:107. CrossRef

180. MenendezD, IngaA, ResnickMA. The expanding universe of p53 targets. Nat Rev Cancer2009;9:724. CrossRef

181. RileyT, SontagE, ChenP, et al.Transcriptional control of human p53‐regulated genes. Nat Rev Mol Cell Biol2008;9:402. CrossRef

182. el‐DeiryWS, KernSE, PietenpolJA, et al.Definition of a consensus binding site for p53. Nat Genet1992;1:45. CrossRef

183. SenguptaS, HarrisCC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol2005;6:44. CrossRef

184. MullerPA, VousdenKH. p53 mutations in cancer. Nat Cell Biol2013;15:2. CrossRef

185. DaiC, GuW. p53 post‐translational modification: deregulated in tumorigenesis. Trends Mol Med2010;16:528. CrossRef

186. SperkaT, WangJ, RudolphKL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol2012;13:579. CrossRef

187. HollsteinMC, MetcalfRA, WelshJA, et al.Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci U S A1990;87:9958. CrossRef

188. HollsteinMC, PeriL, MandardAM, et al.Genetic analysis of human esophageal tumors from two high incidence geographic areas: frequent p53 base substitutions and absence of ras mutations. Cancer Res1991;51:4102.

189. LamKY, TsaoSW, ZhangD, et al.Prevalence and predictive value of p53 mutation in patients with oesophageal squamous cell carcinomas: a prospective clinico‐pathological study and survival analysis of 70 patients. Int J Cancer1997;74:212. CrossRef

190. TaniereP, Martel‐PlancheG, SaurinJC, et al.TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a low incidence area in Western Europe. Br J Cancer2001;85:721. CrossRef

191. AgrawalN, JiaoY, BettegowdaC, et al.Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov2012;2:899. CrossRef

192. RedstonMS, CaldasC, SeymourAB, et al.p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res1994;54:3025.

193. BakerSJ, FearonER, NigroJM, et al.Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science1989;244:217. CrossRef

194. VogelsteinB, FearonER, HamiltonSR, et al.Genetic alterations during colorectal‐tumor development. N Engl J Med1988;319:525. CrossRef

195. BakerSJ, PreisingerAC, JessupJM, et al.p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res1990;50:7717.

196. VenturaA, KirschDG, McLaughlinME, et al.Restoration of p53 function leads to tumour regression in vivo. Nature2007;445:661. CrossRef

197. XueW, ZenderL, MiethingC, et al.Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature2007;445:656. CrossRef

198. Ray‐CoquardI, BlayJY, ItalianoA, et al.Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2‐amplified, well‐differentiated or dedifferentiated liposarcoma: an exploratory proof‐of‐mechanism study. Lancet Oncol2012;13:1133. CrossRef

199. HermekingH. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer2012;12:613. CrossRef

200. LeMT, Shyh‐ChangN, KhawSL, et al.Conserved regulation of p53 network dosage by microRNA‐125b occurs through evolving miRNA‐target gene pairs. PLoS Genet2011;7:e1002242. CrossRef

201. LeMT, TehC, Shyh‐ChangN, et al.MicroRNA‐125b is a novel negative regulator of p53. Genes Dev2009;23:862. CrossRef

202. MaL, ReinhardtF, PanE, et al.Therapeutic silencing of miR‐10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol2010;28:341. CrossRef

203. JanssenHL, ReesinkHW, LawitzEJ, et al.Treatment of HCV infection by targeting microRNA. N Engl J Med2013;368:1685. CrossRef

204. EmerlingBM, HurovJB, PoulogiannisG, et al.Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53‐null tumors. Cell2013;155:844. CrossRef

205. VurusanerB, PoliG, BasagaH. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med2012;52:7. CrossRef

206. BurkhartDL, SageJ. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer2008;8:671. CrossRef

207. HilgendorfKI, LeshchinerES, NedelcuS, et al.The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev2013;27:1003. CrossRef

208. IanariA, NataleT, CaloE, et al.Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell2009;15:184. CrossRef

209. SherrCJ, McCormickF. The RB and p53 pathways in cancer. Cancer Cell2002;2:103. CrossRef

210. van den HeuvelS, DysonNJ. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol2008;9:713. CrossRef

211. CampisiJ, d'Adda di FagagnaF. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol2007;8:729. CrossRef

212. RussoAA, TongL, LeeJO, et al.Structural basis for inhibition of the cyclin‐dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature1998;395:237. CrossRef

213. SerranoM, HannonGJ, BeachD. A new regulatory motif in cell‐cycle control causing specific inhibition of cyclin D/CDK4. Nature1993;366:704. CrossRef

214. PomerantzJ, Schreiber‐AgusN, LiegeoisNJ, et al.The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of. Cell1998;92:713. CrossRef

215. ZhangY, XiongY, YarbroughWG. ARF promotes MDM2 degradation and stabilizes p53: ARF‐INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell1998;92:725. CrossRef

216. el‐DeiryWS, TokinoT, VelculescuVE, et al.WAF1, a potential mediator of p53 tumor suppression. Cell1993;75:817. CrossRef

217. HarperJW, AdamiGR, WeiN, et al.The p21 Cdk‐interacting protein Cip1 is a potent inhibitor of G1 cyclin‐dependent kinases. Cell1993;75:805. CrossRef

218. KoeppDM, SchaeferLK, YeX, et al.Phosphorylation‐dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science2001;294:173. CrossRef

219. MobergKH, BellDW, WahrerDC, et al.Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature2001;413:311. CrossRef

220. StrohmaierH, SpruckCH, KaiserP, et al.Human F‐box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature2001;413:316. CrossRef

221. CaldasC, HahnSA, da CostaLT, et al.Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet1994;8:27. CrossRef

222. SchutteM, HrubanRH, GeradtsJ, et al.Abrogation of the Rb/p16 tumor‐suppressive pathway in virtually all pancreatic carcinomas. Cancer Res1997;57:3126.

223. GoldsteinAM, FraserMC, StruewingJP, et al.Increased risk of pancreatic cancer in melanoma‐prone kindreds with p16INK4 mutations. N Engl J Med1995;333:970. CrossRef

224. WhelanAJ, BartschD, GoodfellowPJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor‐suppressor gene. N Engl J Med1995;333:975. CrossRef

225. HuangL, LangD, GeradtsJ, et al.Molecular and immunochemical analyses of RB1 and cyclin D1 in human ductal pancreatic carcinomas and cell lines. Mol Carcinog1996;15:85. CrossRef

226. AkhoondiS, SunD, von der LehrN, et al.FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res2007;67:9006. CrossRef

227. BondiJ, HusdalA, BukholmG, et al.Expression and gene amplification of primary (A, B1, D1, D3, and E) and secondary (C and H) cyclins in colon adenocarcinomas and correlation with patient outcome. J Clin Pathol2005;58:509. CrossRef

228. Bani‐HaniKE, AlmasriNM, KhaderYS, et al.Combined evaluation of expressions of cyclin E and p53 proteins as prognostic factors for patients with gastric cancer. Clin Cancer Res2005;11:1447. CrossRef

229. BeroukhimR, MermelCH, PorterD, et al.The landscape of somatic copy‐number alteration across human cancers. Nature2010;463:899. CrossRef

230. DulakAM, StojanovP, PengS, et al.Exome and whole‐genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet2013;45:478. CrossRef

231. BoyntonRF, HuangY, BlountPL, et al.Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res1991;51:5766.

232. HuangY, BoyntonRF, BlountPL, et al.Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res1992;52:6525.

233. MaesawaC, TamuraG, NishizukaS, et al.Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res1996;56:3875.

234. XingEP, NieY, WangLD, et al.Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis1999;20:77. CrossRef

235. IkeguchiM, OkaS, GomyoY, et al.Clinical significance of retinoblastoma protein (pRB) expression in esophageal squamous cell carcinoma. J Surg Oncol2000;73:104. CrossRef

236. RoncalliM, BosariS, MarchettiA, et al.Cell cycle‐related gene abnormalities and product expression in esophageal carcinoma. Lab Invest1998;78:1049.

237. ShammaA, DokiY, ShiozakiH, et al.Cyclin D1 overexpression in esophageal dysplasia: a possible biomarker for carcinogenesis of esophageal squamous cell carcinoma. Int J Oncol2000;16:261.

238. SarbiaM, BektasN, MullerW, et al.Expression of cyclin E in dysplasia, carcinoma, and nonmalignant lesions of Barrett esophagus. Cancer1999;86:2597. CrossRef

239. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature2004;431:931. CrossRef

240. DjebaliS, DavisCA, MerkelA, et al.Landscape of transcription in human cells. Nature2012;489:101. CrossRef

241. KapranovP, ChengJ, DikeS, et al.RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science2007;316:1484. CrossRef

242. RinnJL, ChangHY. Genome regulation by long noncoding RNAs. Annu Rev Biochem2012;81:145. CrossRef

243. GutschnerT, DiederichsS. The hallmarks of cancer: a long non‐coding RNA point of view. RNA Biol2012;9:703. CrossRef

244. MercerTR, MattickJS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol2013;20:300. CrossRef

245. PasmantE, LaurendeauI, HeronD, et al.Characterization of a germ‐line deletion, including the entire INK4/ARF locus, in a melanoma‐neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res2007;67:3963. CrossRef

246. YapKL, LiS, Munoz‐CabelloAM, et al.Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell2010;38:662. CrossRef

247. KotakeY, NakagawaT, KitagawaK, et al.Long non‐coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene2011;30:1956. CrossRef

248. McClatcheyAI, YapAS. Contact inhibition (of proliferation) redux. Curr Opin Cell Biol2012;24:685. CrossRef

249. HezelAF, BardeesyN. LKB1; linking cell structure and tumor suppression. Oncogene2008;27:6908. CrossRef

250. PartanenJI, NieminenAI, KlefstromJ. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c‐Myc. Cell Cycle2009;8:716. CrossRef

251. HemminkiA, MarkieD, TomlinsonI, et al.A serine/threonine kinase gene defective in Peutz‐Jeghers syndrome. Nature1998;391:184. CrossRef

252. JenneDE, ReimannH, NezuJ, et al.Peutz‐Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet1998;18:38. CrossRef

253. GiardielloFM, BrensingerJD, TersmetteAC, et al.Very high risk of cancer in familial Peutz‐Jeghers syndrome. Gastroenterology2000;119:1447. CrossRef

254. SuGH, HrubanRH, BansalRK, et al.Germline and somatic mutations of the STK11/LKB1 Peutz‐Jeghers gene in pancreatic and biliary cancers. Am J Pathol1999;154:1835. CrossRef

255. CorradettiMN, InokiK, BardeesyN, et al.Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz‐Jeghers syndrome. Genes Dev2004;18:1533. CrossRef

256. ShawRJ, BardeesyN, ManningBD, et al.The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell2004;6:91. CrossRef

257. JonesRG, PlasDR, KubekS, et al.AMP‐activated protein kinase induces a p53‐dependent metabolic checkpoint. Mol Cell2005;18:283. CrossRef

258. ZhaoB, TumanengK, GuanKL. The Hippo pathway in organ size control, tissue regeneration and stem cell self‐renewal. Nat Cell Biol2011;13:877. CrossRef

259. AsthagiriAR, ParryDM, ButmanJA, et al.Neurofibromatosis type 2. Lancet2009;373:1974. CrossRef

260. CurtoM, ColeBK, LallemandD, et al.Contact‐dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol2007;177:893. CrossRef

261. OkadaT, Lopez‐LagoM, GiancottiFG. Merlin/NF‐2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol2005;171:361. CrossRef

262. ZhangN, BaiH, DavidKK, et al.The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell2010;19:27. CrossRef

263. BenhamoucheS, CurtoM, SaotomeI, et al.Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev2010;24:1718. CrossRef

264. DongJ, FeldmannG, HuangJ, et al.Elucidation of a universal size‐control mechanism in Drosophila and mammals. Cell2007;130:1120. CrossRef

265. ZenderL, SpectorMS, XueW, et al.Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell2006;125:1253. CrossRef

266. XuMZ, YaoTJ, LeeNP, et al.Yes‐associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer2009;115:4576. CrossRef

267. SteinhardtAA, GayyedMF, KleinAP, et al.Expression of Yes‐associated protein in common solid tumors. Hum Pathol2008;39:1582. CrossRef

268. WangY, XieC, LiQ, et al.Clinical and prognostic significance of Yes‐associated protein in colorectal cancer. Tumour Biol2013;34:2169. CrossRef

269. HarveyKF, ZhangX, ThomasDM. The Hippo pathway and human cancer. Nat Rev Cancer2013;13:246. CrossRef

270. MassagueJ. TGFbeta signalling in context. Nat Rev Mol Cell Biol2012;13:616. CrossRef

271. BierieB, MosesHL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer2006;6:506. CrossRef

272. BardeesyN, ChengKH, BergerJH, et al.Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev2006;20:3130. CrossRef

273. GuaschG, SchoberM, PasolliHA, et al.Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell2007;12:313. CrossRef

274. YangL, PangY, MosesHL. TGF‐beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol2010;31:220. CrossRef

275. DattoMB, LiY, PanusJF, et al.Transforming growth factor beta induces the cyclin‐dependent kinase inhibitor p21 through a p53‐independent mechanism. Proc Natl Acad Sci U S A1995;92:5545. CrossRef

276. PardaliK, KurisakiA, MorenA, et al.Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor‐beta. J Biol Chem2000;275:29244. CrossRef

277. ReynisdottirI, PolyakK, IavaroneA, et al.Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF‐beta. Genes Dev1995;9:1831. CrossRef

278. SeoaneJ, LeHV, ShenL, et al.Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell2004;117:211. CrossRef

279. FengXH, LinX, DerynckR. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF‐beta. EMBO J2000;19:5178. CrossRef

280. GomisRR, AlarconC, HeW, et al.A FoxO‐Smad synexpression group in human keratinocytes. Proc Natl Acad Sci U S A2006;103:12747. CrossRef

281. GomisRR, AlarconC, NadalC, et al.C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell2006;10:203. CrossRef

282. HannonGJ, BeachD. p15INK4B is a potential effector of TGF‐beta‐induced cell cycle arrest. Nature1994;371:257. CrossRef

283. SandhuC, GarbeJ, BhattacharyaN, et al.Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B‐cdk4 complexes, and inhibits cyclin D1‐cdk4 association in human mammary epithelial cells. Mol Cell Biol1997;17:2458. CrossRef

284. PolyakK, KatoJY, SolomonMJ, et al.p27Kip1, a cyclin‐Cdk inhibitor, links transforming growth factor‐beta and contact inhibition to cell cycle arrest. Genes Dev1994;8:9. CrossRef

285. ChenCR, KangY, SiegelPM, et al.E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c‐myc repression. Cell2002;110:19. CrossRef

286. ThillainadesanG, ChitilianJM, IsovicM, et al.TGF‐beta‐dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell2012;46:636. CrossRef

287. BiggsWH3rd, MeisenhelderJ, HunterT, et al.Protein kinase B/Akt‐mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A1999;96:7421. CrossRef

288. VivancoI, SawyersCL. The phosphatidylinositol 3‐kinase AKT pathway in human cancer. Nat Rev Cancer2002;2:489. CrossRef

289. ZbukKM, EngC. Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol2007;4:492. CrossRef

290. HoweJR, BairJL, SayedMG, et al.Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet2001;28:184. CrossRef

291. HoweJR, RothS, RingoldJC, et al.Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science1998;280:1086. CrossRef

292. AretzS, StienenD, UhlhaasS, et al.High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet2007;44:702. CrossRef

293. Calva‐CerqueiraD, ChinnathambiS, PechmanB, et al.The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet2009;75:79. CrossRef

294. HoweJR, SayedMG, AhmedAF, et al.The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet2004;41:484. CrossRef

295. LatchfordAR, NealeK, PhillipsRK, et al.Juvenile polyposis syndrome: a study of genotype, phenotype, and long‐term outcome. Dis Colon Rectum2012;55:1038. CrossRef

296. SchwenterF, FaughnanME, GradingerAB, et al.Juvenile polyposis, hereditary hemorrhagic telangiectasia, and early onset colorectal cancer in patients with SMAD4 mutation. J Gastroenterol2012;47:795. CrossRef

297. van HattemWA, BrosensLA, de LengWW, et al.Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut2008;57:623. CrossRef

298. KangSH, BangYJ, ImYH, et al.Transcriptional repression of the transforming growth factor‐beta type I receptor gene by DNA methylation results in the development of TGF‐beta resistance in human gastric cancer. Oncogene1999;18:7280. CrossRef

299. MyeroffLL, ParsonsR, KimSJ, et al.A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res1995;55:5545.

300. PintoM, OliveiraC, CirnesL, et al.Promoter methylation of TGFbeta receptor I and mutation of TGFbeta receptor II are frequent events in MSI sporadic gastric carcinomas. J Pathol2003;200:32. CrossRef

301. OginoS, NoshoK, IraharaN, et al.Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol2009;27:4591. CrossRef

302. ThiagalingamS, LengauerC, LeachFS, et al.Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet1996;13:343. CrossRef

303. VogelsteinB, FearonER, KernSE, et al.Allelotype of colorectal carcinomas. Science1989;244:207. CrossRef

304. WatanabeT, WuTT, CatalanoPJ, et al.Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med2001;344:1196. CrossRef

305. HahnSA, SchutteM, HoqueAT, et al.DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science1996;271:350. CrossRef

306. SchutteM, HrubanRH, HedrickL, et al.DPC4 gene in various tumor types. Cancer Res1996;56:2527.

307. HahnSA, SeymourAB, HoqueAT, et al.Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res1995;55:4670.

308. HahnSA, BartschD, SchroersA, et al.Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res1998;58:1124.

309. MeulmeesterE, Ten DijkeP. The dynamic roles of TGF‐beta in cancer. J Pathol2011;223:205. CrossRef

310. AkhurstRJ, HataA. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov2012;11:790. CrossRef

311. JassJR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology2007;50:113. CrossRef

312. McGranahanN, BurrellRA, EndesfelderD, et al.Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep2012;13:528. CrossRef

313. MulerisM, SalmonRJ, DutrillauxB. Cytogenetics of colorectal adenocarcinomas. Cancer Genet Cytogenet1990;46:143. CrossRef

314. MulerisM, SalmonRJ, ZafraniB, et al.Consistent deficiencies of chromosome 18 and of the short arm of chromosome 17 in eleven cases of human large bowel cancer: a possible recessive determinism. Ann Genet1985;28:206.

315. FearonER, HamiltonSR, VogelsteinB. Clonal analysis of human colorectal tumors. Science1987;238:193. CrossRef

316. HabermannJK, PaulsenU, RoblickUJ, et al.Stage‐specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer2007;46:10. CrossRef

317. RiedT, KnutzenR, SteinbeckR, et al.Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer1996;15:234. CrossRef

318. PinoMS, ChungDC. The chromosomal instability pathway in colon cancer. Gastroenterology2010;138:2059. CrossRef

319. BardiG, ParadaLA, BommeL, et al.Cytogenetic comparisons of synchronous carcinomas and polyps in patients with colorectal cancer. Br J Cancer1997;76:765. CrossRef

320. ShihIM, ZhouW, GoodmanSN, et al.Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res2001;61:818.

321. StolerDL, ChenN, BasikM, et al.The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci U S A1999;96:15121. CrossRef

322. ChengYW, PincasH, BacolodMD, et al.CpG island methylator phenotype associates with low‐degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res2008;14:6005. CrossRef

323. RowanA, HalfordS, GaasenbeekM, et al.Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol2005;3:1115. CrossRef

324. WatanabeT, KobunaiT, YamamotoY, et al.Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol2012;30:2256. CrossRef

325. WeberJC, MeyerN, PencreachE, et al.Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes. Int J Cancer2007;120:524. CrossRef

326. KinzlerKW, VogelsteinB. Cancer‐susceptibility genes. Gatekeepers and caretakers. Nature1997;386:761. CrossRef

327. NegriniS, GorgoulisVG, HalazonetisTD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol2010;11:220. CrossRef

328. RajagopalanH, JallepalliPV, RagoC, et al.Inactivation of hCDC4 can cause chromosomal instability. Nature2004;428:77. CrossRef

329. HalazonetisTD, GorgoulisVG, BartekJ. An oncogene‐induced DNA damage model for cancer development. Science2008;319:1352. CrossRef

330. BartkovaJ, HorejsiZ, KoedK, et al.DNA damage response as a candidate anti‐cancer barrier in early human tumorigenesis. Nature2005;434:864. CrossRef

331. BartkovaJ, RezaeiN, LiontosM, et al.Oncogene‐induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature2006;444:633. CrossRef

332. Di MiccoR, FumagalliM, CicaleseA, et al.Oncogene‐induced senescence is a DNA damage response triggered by DNA hyper‐replication. Nature2006;444:638. CrossRef

333. GorgoulisVG, VassiliouLV, KarakaidosP, et al.Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature2005;434:907. CrossRef

334. Ozeri‐GalaiE, BesterAC, KeremB. The complex basis underlying common fragile site instability in cancer. Trends Genet2012;28:295. CrossRef

335. TsantoulisPK, KotsinasA, SfikakisPP, et al.Oncogene‐induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome‐wide study. Oncogene2008;27:3256. CrossRef

336. BurrellRA, McClellandSE, EndesfelderD, et al.Replication stress links structural and numerical cancer chromosomal instability. Nature2013;494:492. CrossRef

337. CahillDP, da CostaLT, Carson‐WalterEB, et al.Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics1999;58:181. CrossRef

338. CahillDP, LengauerC, YuJ, et al.Mutations of mitotic checkpoint genes in human cancers. Nature1998;392:300. CrossRef

339. WangZ, CumminsJM, ShenD, et al.Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res2004;64:2998. CrossRef

340. BesterAC, RonigerM, OrenYS, et al.Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell2011;145:435. CrossRef

341. HernandoE, NahleZ, JuanG, et al.Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature2004;430:797. CrossRef

342. ManningAL, DysonNJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer2012;12:220.

343. ManningAL, LongworthMS, DysonNJ. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev2010;24:1364. CrossRef

344. ZhangJ, BenaventeCA, McEvoyJ, et al.A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature2012;481:329.

345. BarberTD, McManusK, YuenKW, et al.Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A2008;105:3443. CrossRef

346. GrimJE, KnoblaughSE, GuthrieKA, et al.Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol Cell Biol2012;32:2160. CrossRef

347. WarthinAS. Heredity with reference to carcinoma. Arch Intern Med1913;12:546. CrossRef

348. LynchHT, de la ChapelleA. Hereditary colorectal cancer. N Engl J Med2003;348:919. CrossRef

349. WinAK, YoungJP, LindorNM, et al.Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol2012;30:958. CrossRef

350. KastrinosF, MukherjeeB, TayobN, et al.Risk of pancreatic cancer in families with Lynch syndrome. JAMA2009;302:1790. CrossRef

351. AaltonenLA, PeltomakiP, LeachFS, et al.Clues to the pathogenesis of familial colorectal cancer. Science1993;260:812. CrossRef

352. BolandCR, ThibodeauSN, HamiltonSR, et al.A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res1998;58:5248.

353. HendriksYM, de JongAE, MorreauH, et al.Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin2006;56:213. CrossRef

354. JarvinenHJ, AarnioM, MustonenH, et al.Controlled 15‐year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology2000;118:829. CrossRef

355. IonovY, PeinadoMA, MalkhosyanS, et al.Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature1993;363:558. CrossRef

356. ThibodeauSN, BrenG, SchaidD. Microsatellite instability in cancer of the proximal colon. Science1993;260:816. CrossRef

357. VilarE, GruberSB. Microsatellite instability in colorectal cancer‐the stable evidence. Nat Rev Clin Oncol2010;7:153. CrossRef

358. RibicCM, SargentDJ, MooreMJ, et al.Tumor microsatellite‐instability status as a predictor of benefit from fluorouracil‐based adjuvant chemotherapy for colon cancer. N Engl J Med2003;349:247. CrossRef

359. SargentDJ, MarsoniS, MongesG, et al.Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil‐based adjuvant therapy in colon cancer. J Clin Oncol2010;28:3219. CrossRef

360. FridmanWH, PagesF, Sautes‐FridmanC, et al.The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer2012;12:298. CrossRef

361. MarkowitzS, WangJ, MyeroffL, et al.Inactivation of the type II TGF‐beta receptor in colon cancer cells with microsatellite instability. Science1995;268:1336. CrossRef

362. ParsonsR, MyeroffLL, LiuB, et al.Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res1995;55:5548.

363. ShimaK, MorikawaT, YamauchiM, et al.TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS ONE2011;6:e25062. CrossRef

364. JungB, DoctoleroRT, TajimaA, et al.Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology2004;126:654. CrossRef

365. GoelA, ArnoldCN, NiedzwieckiD, et al.Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability‐high sporadic colorectal cancers. Cancer Res2004;64:3014. CrossRef

366. ShimizuY, IkedaS, FujimoriM, et al.Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes Cancer2002;33:73. CrossRef

367. RampinoN, YamamotoH, IonovY, et al.Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science1997;275:967. CrossRef

368. HaradaT, ChelalaC, BhaktaV, et al.Genome‐wide DNA copy number analysis in pancreatic cancer using high‐density single nucleotide polymorphism arrays. Oncogene2008;27:1951. CrossRef

369. YamanoM, FujiiH, TakagakiT, et al.Genetic progression and divergence in pancreatic carcinoma. Am J Pathol2000;156:2123. CrossRef

370. WangL, TsutsumiS, KawaguchiT, et al.Whole‐exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res2012;22:208. CrossRef

371. LaghiL, BeghelliS, SpinelliA, et al.Irrelevance of microsatellite instability in the epidemiology of sporadic pancreatic ductal adenocarcinoma. PLoS ONE2012;7:e46002. CrossRef

372. FarrisAB3rd, DemiccoEG, LeLP, et al.Clinicopathologic and molecular profiles of microsatellite unstable Barrett Esophagus‐associated adenocarcinoma. Am J Surg Pathol2011;35:647. CrossRef

373. ToyotaM, AhujaN, Ohe‐ToyotaM, et al.CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A1999;96:8681. CrossRef

374. BeggsAD, JonesA, El‐BahwaryM, et al.Whole‐genome methylation analysis of benign and malignant colorectal tumours. J Pathol2013;229:697. CrossRef

375. HinoueT, WeisenbergerDJ, LangeCP, et al.Genome‐scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res2012;22:271. CrossRef

376. WeisenbergerDJ, SiegmundKD, CampanM, et al.CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet2006;38:787. CrossRef

377. YagiK, AkagiK, HayashiH, et al.Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res2010;16:21. CrossRef

378. HermanJG, UmarA, PolyakK, et al.Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A1998;95:6870. CrossRef

379. KaneMF, LodaM, GaidaGM, et al.Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair‐defective human tumor cell lines. Cancer Res1997;57:808.

380. VeiglML, KasturiL, OlechnowiczJ, et al.Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A1998;95:8698. CrossRef

381. BeachR, ChanAO, WuTT, et al.BRAF mutations in aberrant crypt foci and hyperplastic polyposis. Am J Pathol2005;166:1069. CrossRef

382. SamowitzWS, AlbertsenH, HerrickJ, et al.Evaluation of a large, population‐based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology2005;129:837. CrossRef

383. ShenL, ToyotaM, KondoY, et al.Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A2007;104:18654. CrossRef

384. ToyotaM, AhujaN, SuzukiH, et al.Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res1999;59:5438.

385. AnC, ChoiIS, YaoJC, et al.Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma. Clin Cancer Res2005;11:656.

386. YamamotoH, Perez‐PiteiraJ, YoshidaT, et al.Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology1999;116:1348. CrossRef

387. OttiniL, FalchettiM, LupiR, et al.Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann Oncol2006;17. CrossRef

388. FuT, PappouEP, GuzzettaAA, et al.CpG island methylator phenotype‐positive tumors in the absence of MLH1 methylation constitute a distinct subset of duodenal adenocarcinomas and are associated with poor prognosis. Clin Cancer Res2012;18:4743. CrossRef

389. SinicropeFA, RegoRL, HallingKC, et al.Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology2006;131:729. CrossRef

390. TrautmannK, TerdimanJP, FrenchAJ, et al.Chromosomal instability in microsatellite‐unstable and stable colon cancer. Clin Cancer Res2006;12:6379. CrossRef

391. De SousaEMF, WangX, JansenM, et al.Poor‐prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med2013;19:614. CrossRef

392. SadanandamA, LyssiotisCA, HomicskoK, et al.A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med2013;19:619. CrossRef

393. RoyR, ChunJ, PowellSN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer2012;12:68. CrossRef

394. FerlaR, CaloV, CascioS, et al.Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol2007;18(Suppl 6):vi93. CrossRef

395. RoaBB, BoydAA, VolcikK, et al.Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet1996;14:185. CrossRef

396. ToninP, WeberB, OffitK, et al.Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families. Nat Med1996;2:1179. CrossRef

397. FerroneCR, LevineDA, TangLH, et al.BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol2009;27:433. CrossRef

398. HahnSA, GreenhalfB, EllisI, et al.BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst2003;95:214. CrossRef

399. LucasAL, ShakyaR, LipsycMD, et al.High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res2013;19:3396. CrossRef

400. StadlerZK, Salo‐MullenE, PatilSM, et al.Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer2012;118:493. CrossRef

401. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst1999;91:1310. CrossRef

402. IqbalJ, RagoneA, LubinskiJ, et al.The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer2012;107:2005. CrossRef

403. ThompsonD, EastonDF, Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst2002;94:1358. CrossRef

404. CantoMI, HarinckF, HrubanRH, et al.International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut2013;62:339. CrossRef

405. JonesS, HrubanRH, KamiyamaM, et al.Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science2009;324:217. CrossRef

406. SlaterEP, LangerP, NiemczykE, et al.PALB2 mutations in European familial pancreatic cancer families. Clin Genet2010;78:490. CrossRef

407. BryantHE, SchultzN, ThomasHD, et al.Specific killing of BRCA2‐deficient tumours with inhibitors of poly(ADP‐ribose) polymerase. Nature2005;434:913. CrossRef

408. FarmerH, McCabeN, LordCJ, et al.Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature2005;434:917. CrossRef

409. DrewY, MulliganEA, VongWT, et al.Therapeutic potential of poly(ADP‐ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst2011;103:334. CrossRef

410. LoweryMA, KelsenDP, StadlerZK, et al.An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist2011;16:1397. CrossRef

411. ColucciG, LabiancaR, Di CostanzoF, et al.Randomized phase III trial of gemcitabine plus cisplatin compared with single‐agent gemcitabine as first‐line treatment of patients with advanced pancreatic cancer: the GIP‐1 study. J Clin Oncol2010;28:1645. CrossRef

412. HeinemannV, QuietzschD, GieselerF, et al.Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol2006;24:3946. CrossRef

413. HarleyCB, FutcherAB, GreiderCW. Telomeres shorten during ageing of human fibroblasts. Nature1990;345:458. CrossRef

414. DengY, ChanSS, ChangS. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer2008;8:450. CrossRef

415. HerbigU, JoblingWA, ChenBP, et al.Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell2004;14:501. CrossRef

416. ArtandiSE, ChangS, LeeSL, et al.Telomere dysfunction promotes non‐reciprocal translocations and epithelial cancers in mice. Nature2000;406:641. CrossRef

417. GisselssonD, JonsonT, PetersenA, et al.Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A2001;98:12683. CrossRef

418. O'HaganRC, ChangS, MaserRS, et al.Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell2002;2:149. CrossRef

419. de LangeT. How telomeres solve the end‐protection problem. Science2009;326:948. CrossRef

420. AllshireRC, GosdenJR, CrossSH, et al.Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature1988;332:656. CrossRef

421. MoyzisRK, BuckinghamJM, CramLS, et al.A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A1988;85:6622. CrossRef

422. de LangeT. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev2005;19:2100. CrossRef

423. ShilohY. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer2003;3:155. CrossRef

424. McVeyM, LeeSE. MMEJ repair of double‐strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet2008;24:529. CrossRef

425. CelliGB, de LangeT. DNA processing is not required for ATM‐mediated telomere damage response after TRF2 deletion. Nat Cell Biol2005;7:712. CrossRef

426. DenchiEL, de LangeT. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature2007;448:1068. CrossRef

427. OkamotoK, BartocciC, OuzounovI, et al.A two‐step mechanism for TRF2‐mediated chromosome‐end protection. Nature2013;494:502. CrossRef

428. SfeirA, de LangeT. Removal of shelterin reveals the telomere end‐protection problem. Science2012;336:593. CrossRef

429. Begus‐NahrmannY, HartmannD, KrausJ, et al.Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis. J Clin Invest2012;122:2283. CrossRef

430. MartinezP, ThanasoulaM, MunozP, et al.Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev2009;23:2060. CrossRef

431. RaynaudCM, JangSJ, NuciforoP, et al.Telomere shortening is correlated with the DNA damage response and telomeric protein down‐regulation in colorectal preneoplastic lesions. Ann Oncol2008;19:1875. CrossRef

432. SfeirA, KosiyatrakulST, HockemeyerD, et al.Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell2009;138:90. CrossRef

433. SuramA, KaplunovJ, PatelPL, et al.Oncogene‐induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J2012;31:2839. CrossRef

434. BlackburnEH, CollinsK. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol2011;3:a003558. CrossRef

435. GreiderCW, BlackburnEH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell1985;43:405. CrossRef

436. PontiD, CostaA, ZaffaroniN, et al.Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res2005;65:5506. CrossRef

437. ArmaniosM, BlackburnEH. The telomere syndromes. Nat Rev Genet2012;13:693. CrossRef

438. KimNW, PiatyszekMA, ProwseKR, et al.Specific association of human telomerase activity with immortal cells and cancer. Science1994;266:2011. CrossRef

439. Garcia‐ArandaC, de JuanC, Diaz‐LopezA, et al.Correlations of telomere length, telomerase activity, and telomeric‐repeat binding factor 1 expression in colorectal carcinoma. Cancer2006;106:541. CrossRef

440. IwaoT, HiyamaE, YokoyamaT, et al.Telomerase activity for the preoperative diagnosis of pancreatic cancer. J Natl Cancer Inst1997;89:1621. CrossRef

441. KoyanagiK, OzawaS, AndoN, et al.Clinical significance of telomerase activity in the non‐cancerous epithelial region of oesophageal squamous cell carcinoma. Br J Surg1999;86:674. CrossRef

442. ShayJW, BacchettiS. A survey of telomerase activity in human cancer. Eur J Cancer1997;33:787. CrossRef

443. SchepersAG, VriesR, van den BornM, et al.Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J2011;30:1104. CrossRef

444. TakahashiK, TanabeK, OhnukiM, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell2007;131:861. CrossRef

445. BroccoliD, YoungJW, de LangeT. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A1995;92:9082. CrossRef

446. HiyamaK, HiraiY, KyoizumiS, et al.Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol1995;155:3711.

447. LiuK, SchoonmakerMM, LevineBL, et al.Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc Natl Acad Sci U S A1999;96:5147. CrossRef

448. YuiJ, ChiuCP, LansdorpPM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood1998;91:3255.

449. BachorC, BachorOA, BoukampP. Telomerase is active in normal gastrointestinal mucosa and not up‐regulated in precancerous lesions. J Cancer Res Clin Oncol1999;125:453. CrossRef

450. Harle‐BachorC, BoukampP. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma‐derived skin keratinocytes. Proc Natl Acad Sci U S A1996;93:6476. CrossRef

451. RamirezRD, WrightWE, ShayJW, et al.Telomerase activity concentrates in the mitotically active segments of human hair follicles. J Invest Dermatol1997;108:113. CrossRef

452. MasutomiK, YuEY, KhurtsS, et al.Telomerase maintains telomere structure in normal human cells. Cell2003;114:241. CrossRef

453. HoffmeyerK, RaggioliA, RudloffS, et al.Wnt/beta‐catenin signaling regulates telomerase in stem cells and cancer cells. Science2012;336:1549. CrossRef

454. ZhangY, TohL, LauP, et al.Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/beta‐catenin pathway in human cancer. J Biol Chem2012;287:32494. CrossRef

455. JaitnerS, ReicheJA, SchaffauerAJ, et al.Human telomerase reverse transcriptase (hTERT) is a target gene of beta‐catenin in human colorectal tumors. Cell Cycle2012;11:3331. CrossRef

456. MizumotoI, OgawaY, NiiyamaH, et al.Possible role of telomerase activation in the multistep tumor progression of periampullary lesions in patients with familial adenomatous polyposis. Am J Gastroenterol2001;96:1261. CrossRef

457. WangJ, XieLY, AllanS, et al.Myc activates telomerase. Genes Dev1998;12:1769. CrossRef

458. WuKJ, GrandoriC, AmackerM, et al.Direct activation of TERT transcription by c‐MYC. Nat Genet1999;21:220. CrossRef

459. ZhangA, ZhengC, LindvallC, et al.Frequent amplification of the telomerase reverse transcriptase gene in human tumors. Cancer Res2000;60:6230.

460. HollenhorstPC, McIntoshLP, GravesBJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem2011;80:437. CrossRef

461. HornS, FiglA, RachakondaPS, et al.TERT promoter mutations in familial and sporadic melanoma. Science2013;339:959. CrossRef

462. HuangFW, HodisE, XuMJ, et al.Highly recurrent TERT promoter mutations in human melanoma. Science2013;339:957. CrossRef

463. VinagreJ, AlmeidaA, PopuloH, et al.Frequency of TERT promoter mutations in human cancers. Nat Commun2013;4:2185. CrossRef

464. QuY, ShiL, WangD, et al.Low frequency of TERT promoter mutations in a large cohort of gallbladder and gastric cancers. Int J Cancer2014;134:2993. CrossRef

465. BryanTM, EnglezouA, Dalla‐PozzaL, et al.Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor‐derived cell lines. Nat Med1997;3:1271. CrossRef

466. ShayJW, ReddelRR, WrightWE. Cancer. Cancer and telomeres–an ALTernative to telomerase. Science2012;336:1388. CrossRef

467. ChangS, KhooCM, NaylorML, et al.Telomere‐based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev2003;17:88. CrossRef

468. ChinL, ArtandiSE, ShenQ, et al.p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell1999;97:527. CrossRef

469. FaraziPA, GlickmanJ, HornerJ, et al.Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res2006;66:4766. CrossRef

470. ChoudhuryAR, JuZ, DjojosubrotoMW, et al.Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet2007;39:99. CrossRef

471. GreenbergRA, ChinL, FeminoA, et al.Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer‐prone mouse. Cell1999;97:515. CrossRef

472. KhooCM, CarrascoDR, BosenbergMW, et al.Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase‐deficient mouse. Proc Natl Acad Sci U S A2007;104:3931. CrossRef

473. RudolphKL, MillardM, BosenbergMW, et al.Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet2001;28:155. CrossRef

474. Siegl‐CachedenierI, MunozP, FloresJM, et al.Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev2007;21:2234. CrossRef

475. WongKK, MaserRS, BachooRM, et al.Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature2003;421:643. CrossRef

476. HuJ, HwangSS, LiesaM, et al.Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell2012;148:651. CrossRef

477. DingZ, WuCJ, JaskelioffM, et al.Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell2012;148:896. CrossRef

478. ArtandiSE, DePinhoRA. Telomeres and telomerase in cancer. Carcinogenesis2010;31:9. CrossRef

479. BlascoMA. Telomere length, stem cells and aging. Nat Chem Biol2007;3:640. CrossRef

480. GunesC, RudolphKL. The role of telomeres in stem cells and cancer. Cell2013;152:390. CrossRef

481. ButtHZ, AtturuG, LondonNJ, et al.Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg2010;40:17. CrossRef

482. FriedrichU, GrieseE, SchwabM, et al.Telomere length in different tissues of elderly patients. Mech Ageing Dev2000;119:89. CrossRef

483. HemannMT, StrongMA, HaoLY, et al.The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell2001;107:67. CrossRef

484. LeeIM, LinJ, CastonguayAJ, et al.Mean leukocyte telomere length and risk of incident colorectal carcinoma in women: a prospective, nested case‐control study. Clin Chem Lab Med2010;48:259.

485. MaH, ZhouZ, WeiS, et al.Shortened telomere length is associated with increased risk of cancer: a meta‐analysis. PLoS ONE2011;6:e20466. CrossRef

486. OkudaK, BardeguezA, GardnerJP, et al.Telomere length in the newborn. Pediatr Res2002;52:377. CrossRef

487. WeischerM, NordestgaardBG, CawthonRM, et al.Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst2013;105:459. CrossRef

488. WentzensenIM, MirabelloL, PfeifferRM, et al.The association of telomere length and cancer: a meta‐analysis. Cancer Epidemiol Biomarkers Prev2011;20:1238. CrossRef

489. WilleitP, WilleitJ, Kloss‐BrandstatterA, et al.Fifteen‐year follow‐up of association between telomere length and incident cancer and cancer mortality. JAMA2011;306:42. CrossRef

490. WilsonWR, HerbertKE, MistryY, et al.Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J2008;29:2689. CrossRef

491. ZeeRY, CastonguayAJ, BartonNS, et al.Mean telomere length and risk of incident colorectal carcinoma: a prospective, nested case‐control approach. Cancer Epidemiol Biomarkers Prev2009;18:2280. CrossRef

492. GreavesM, MaleyCC. Clonal evolution in cancer. Nature2012;481:306. CrossRef

493. ClarkeMF, DickJE, DirksPB, et al.Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res2006;66:9339. CrossRef

494. MageeJA, PiskounovaE, MorrisonSJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell2012;21:283. CrossRef

495. ChafferCL, WeinbergRA. A perspective on cancer cell metastasis. Science2011;331:1559. CrossRef

496. MedemaJP. Cancer stem cells: the challenges ahead. Nat Cell Biol2013;15:338. CrossRef

497. TarinD. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev2013;32:553. CrossRef

498. LapidotT, SirardC, VormoorJ, et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature1994;367:645. CrossRef

499. JungP, SatoT, Merlos‐SuarezA, et al.Isolation and in vitro expansion of human colonic stem cells. Nat Med2011;17:1225. CrossRef

500. VarnatF, DuquetA, MalerbaM, et al.Human colon cancer epithelial cells harbour active HEDGEHOG‐GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med2009;1:338. CrossRef

501. YamashitaT, WangXW. Cancer stem cells in the development of liver cancer. J Clin Invest2013;123:1911. CrossRef

502. HidalgoM, Von HoffDD. Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas. Clin Cancer Res2012;18:4249. CrossRef

503. SinghSR. Gastric cancer stem cells: a novel therapeutic target. Cancer Lett2013;338:110. CrossRef

504. TangKH, DaiYD, TongM, et al.A CD90(+) tumor‐initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res2013;73:2322. CrossRef

505. ZhaoJS, LiWJ, GeD, et al.Tumor initiating cells in esophageal squamous cell carcinomas express high levels of CD44. PLoS ONE2011;6:e21419. CrossRef

506. NguyenLV, VannerR, DirksP, et al.Cancer stem cells: an evolving concept. Nat Rev Cancer2012;12:133.

507. QuintanaE, ShackletonM, FosterHR, et al.Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell2010;18:510. CrossRef

508. QuintanaE, ShackletonM, SabelMS, et al.Efficient tumour formation by single human melanoma cells. Nature2008;456:593. CrossRef

509. SchattonT, MurphyGF, FrankNY, et al.Identification of cells initiating human melanomas. Nature2008;451:345. CrossRef

510. O'BrienCA, PollettA, GallingerS, et al.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature2007;445:106. CrossRef

511. Ricci‐VitianiL, LombardiDG, PilozziE, et al.Identification and expansion of human colon‐cancer‐initiating cells. Nature2007;445:111. CrossRef

512. BarkerN, van EsJH, KuipersJ, et al.Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature2007;449:1003. CrossRef

513. ShmelkovSV, ButlerJM, HooperAT, et al.CD133 expression is not restricted to stem cells, and both CD133+ and CD133‐ metastatic colon cancer cells initiate tumors. J Clin Invest2008;118:2111.

514. BarkerN, RidgwayRA, van EsJH, et al.Crypt stem cells as the cells‐of‐origin of intestinal cancer. Nature2009;457:608. CrossRef

515. LiC, WuJJ, HynesM, et al.c‐Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology2011;141:2218. CrossRef

516. OikawaT, KamiyaA, ZeniyaM, et al.Sal‐like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology2013;57:1469. CrossRef

517. DeanM, FojoT, BatesS. Tumour stem cells and drug resistance. Nat Rev Cancer2005;5:275. CrossRef

518. TodaroM, AleaMP, Di StefanoAB, et al.Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin‐4. Cell Stem Cell2007;1:389. CrossRef

519. BaoS, WuQ, McLendonRE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature2006;444:756. CrossRef

520. DiehnM, ChoRW, LoboNA, et al.Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature2009;458:780. CrossRef

521. HermannPC, HuberSL, HerrlerT, et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell2007;1:313. CrossRef

522. HaraguchiN, IshiiH, MimoriK, et al.CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest2010;120:3326. CrossRef

523. LeeTK, CastilhoA, CheungVC, et al.CD24(+) liver tumor‐initiating cells drive self‐renewal and tumor initiation through STAT3‐mediated NANOG regulation. Cell Stem Cell2011;9:50. CrossRef

524. PangR, LawWL, ChuAC, et al.A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell2010;6:603. CrossRef

525. DieterSM, BallCR, HoffmannCM, et al.Distinct types of tumor‐initiating cells form human colon cancer tumors and metastases. Cell Stem Cell2011;9:357. CrossRef

526. GaoW, ChenL, MaZ, et al.Isolation and phenotypic characterization of colorectal cancer stem cells with organ‐specific metastatic potential. Gastroenterology2013;145:636. CrossRef

527. YangJ, WeinbergRA. Epithelial‐mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell2008;14:818. CrossRef

528. RhimAD, MirekET, AielloNM, et al.EMT and dissemination precede pancreatic tumor formation. Cell2012;148:349. CrossRef

529. SunYF, XuY, YangXR, et al.Circulating stem cell‐like epithelial cell adhesion molecule‐positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology2013;57:1458. CrossRef

530. VermeulenL, De SousaEMF, van der HeijdenM, et al.Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol2010;12:468. CrossRef

531. VermeulenL, TodaroM, de Sousa MelloF, et al.Single‐cell cloning of colon cancer stem cells reveals a multi‐lineage differentiation capacity. Proc Natl Acad Sci U S A2008;105:13427. CrossRef

532. DalerbaP, KaliskyT, SahooD, et al.Single‐cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol2011;29:1120. CrossRef

533. Ricci‐VitianiL, PalliniR, BiffoniM, et al.Tumour vascularization via endothelial differentiation of glioblastoma stem‐like cells. Nature2010;468:824. CrossRef

534. WangR, ChadalavadaK, WilshireJ, et al.Glioblastoma stem‐like cells give rise to tumour endothelium. Nature2010;468:829. CrossRef

535. SodaY, MarumotoT, Friedmann‐MorvinskiD, et al.Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A2011;108:4274. CrossRef

536. ChengL, HuangZ, ZhouW, et al.Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell2013;153:139. CrossRef

537. HollandJD, KlausA, GarrattAN, et al.Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol2013;25:254. CrossRef

538. SchuijersJ, CleversH. Adult mammalian stem cells: the role of Wnt, Lgr5 and R‐spondins. EMBO J2012;31:2685. CrossRef

539. KorinekV, BarkerN, MoererP, et al.Depletion of epithelial stem‐cell compartments in the small intestine of mice lacking Tcf‐4. Nat Genet1998;19:379. CrossRef

540. van de WeteringM, SanchoE, VerweijC, et al.The beta‐catenin/TCF‐4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell2002;111:241. CrossRef

541. ReyaT, CleversH. Wnt signalling in stem cells and cancer. Nature2005;434:843. CrossRef

542. Van der FlierLG, Sabates‐BellverJ, OvingI, et al.The intestinal Wnt/TCF signature. Gastroenterology2007;132:628. CrossRef

543. de LauW, BarkerN, LowTY, et al.Lgr5 homologues associate with Wnt receptors and mediate R‐spondin signalling. Nature2011;476:293. CrossRef

544. BarkerN, HuchM, KujalaP, et al.Lgr5(+ve) stem cells drive self‐renewal in the stomach and build long‐lived gastric units in vitro. Cell Stem Cell2010;6:25. CrossRef

545. JaksV, BarkerN, KasperM, et al.Lgr5 marks cycling, yet long‐lived, hair follicle stem cells. Nat Genet2008;40:1291. CrossRef

546. SatoT, VriesRG, SnippertHJ, et al.Single Lgr5 stem cells build crypt‐villus structures in vitro without a mesenchymal niche. Nature2009;459:262. CrossRef

547. ParkJI, VenteicherAS, HongJY, et al.Telomerase modulates Wnt signalling by association with target gene chromatin. Nature2009;460:66. CrossRef

548. LuD, ChoiMY, YuJ, et al.Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A2011;108:13253. CrossRef

549. DongTT, ZhouHM, WangLL, et al.Salinomycin selectively targets “CD133+” cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol2011;18:1797. CrossRef

550. GuptaPB, OnderTT, JiangG, et al.Identification of selective inhibitors of cancer stem cells by high‐throughput screening. Cell2009;138:645. CrossRef

551. KretzschmarK, WattFM. Lineage tracing. Cell2012;148:33. CrossRef

552. SchepersAG, SnippertHJ, StangeDE, et al.Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science2012;337:730. CrossRef

553. NakanishiY, SenoH, FukuokaA, et al.Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet2013;45:98. CrossRef

554. ChenJ, LiY, YuTS, et al.A restricted cell population propagates glioblastoma growth after chemotherapy. Nature2012;488:522. CrossRef

555. DriessensG, BeckB, CaauweA, et al.Defining the mode of tumour growth by clonal analysis. Nature2012;488:527. CrossRef

556. Merlos‐SuarezA, BarrigaFM, JungP, et al.The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell2011;8:511. CrossRef

557. ShackletonM, QuintanaE, FearonER, et al.Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell2009;138:822. CrossRef

558. VisvaderJE. Cells of origin in cancer. Nature2011;469:314. CrossRef

559. van EsJH, SatoT, van de WeteringM, et al.Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol2012;14:1099. CrossRef

560. ItzkovitzS, LyubimovaA, BlatIC, et al.Single‐molecule transcript counting of stem‐cell markers in the mouse intestine. Nat Cell Biol2012;14:106. CrossRef

561. MunozJ, StangeDE, SchepersAG, et al.The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent “+4” cell markers. EMBO J2012;31:3079. CrossRef

562. TianH, BiehsB, WarmingS, et al.A reserve stem cell population in small intestine renders Lgr5‐positive cells dispensable. Nature2011;478:255. CrossRef

563. TakedaN, JainR, LeBoeufMR, et al.Interconversion between intestinal stem cell populations in distinct niches. Science2011;334:1420. CrossRef

564. TsaiKS, YangSH, LeiYP, et al.Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology2011;141:1046. CrossRef

565. ChafferCL, BrueckmannI, ScheelC, et al.Normal and neoplastic nonstem cells can spontaneously convert to a stem‐like state. Proc Natl Acad Sci U S A2011;108:7950. CrossRef

566. GuptaPB, FillmoreCM, JiangG, et al.Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell2011;146:633. CrossRef

567. Friedmann‐MorvinskiD, BushongEA, KeE, et al.Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science2012;338:1080. CrossRef

568. HoeyT, YenWC, AxelrodF, et al.DLL4 blockade inhibits tumor growth and reduces tumor‐initiating cell frequency. Cell Stem Cell2009;5:168. CrossRef

569. LombardoY, ScopellitiA, CammareriP, et al.Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology2011;140:297. CrossRef

570. VallierL, AlexanderM, PedersenRA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci2005;118:4495. CrossRef

571. XiaoL, YuanX, SharkisSJ. Activin A maintains self‐renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells2006;24:1476. CrossRef

572. LonardoE, HermannPC, MuellerMT, et al.Nodal/Activin signaling drives self‐renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell2011;9:433. CrossRef

573. BidardFC, PiergaJY, SoriaJC, et al.Translating metastasis‐related biomarkers to the clinic–progress and pitfalls. Nat Rev Clin Oncol2013;10:169. CrossRef

574. TalmadgeJE, FidlerIJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res2010;70:5649. CrossRef

575. BerxG, van RoyF. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol2009;1:a003129. CrossRef

576. De CraeneB, BerxG. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer2013;13:97. CrossRef

577. PolyakK, WeinbergRA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer2009;9:265. CrossRef

578. ThieryJP, AcloqueH, HuangRY, et al.Epithelial‐mesenchymal transitions in development and disease. Cell2009;139:871. CrossRef

579. TarinD, ThompsonEW, NewgreenDF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res2005;65:5996. CrossRef

580. MitrovicB, SchaefferDF, RiddellRH, et al.Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol2012;25:1315. CrossRef

581. TeramotoH, KoikeM, TanakaC, et al.Tumor budding as a useful prognostic marker in T1‐stage squamous cell carcinoma of the esophagus. J Surg Oncol2013;108:42. CrossRef

582. KaramitopoulouE, ZlobecI, BornD, et al.Tumour budding is a strong and independent prognostic factor in pancreatic cancer. Eur J Cancer2013;49:1032. CrossRef

583. BrownM, SillahK, GriffithsEA, et al.Tumour budding and a low host inflammatory response are associated with a poor prognosis in oesophageal and gastro‐oesophageal junction cancers. Histopathology2010;56:893. CrossRef

584. WangLM, KevansD, MulcahyH, et al.Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol2009;33:134. CrossRef

585. MiyataH, YoshiokaA, YamasakiM, et al.Tumor budding in tumor invasive front predicts prognosis and survival of patients with esophageal squamous cell carcinomas receiving neoadjuvant chemotherapy. Cancer2009;115:3324. CrossRef

586. UenoH, MurphyJ, JassJR, et al.Tumour “budding” as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology2002;40:127. CrossRef

587. BrabletzT. To differentiate or not–routes towards metastasis. Nat Rev Cancer2012;12:425. CrossRef

588. ZlobecI, LugliA. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget2010;1:651. CrossRef

589. LugliA, KaramitopoulouE, ZlobecI. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer2012;106:1713. CrossRef

590. PrallF, OstwaldC, LinnebacherM. Tubular invasion and the morphogenesis of tumor budding in colorectal carcinoma. Hum Pathol2009;40:1510. CrossRef

591. Alix‐PanabieresC, SchwarzenbachH, PantelK. Circulating tumor cells and circulating tumor DNA. Annu Rev Med2012;63:199. CrossRef

592. Bednarz‐KnollN, Alix‐PanabieresC, PantelK. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev2012;31:673. CrossRef

593. ChristiansenJJ, RajasekaranAK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res2006;66:8319. CrossRef

594. LedfordH. Cancer theory faces doubts. Nature2011;472:273. CrossRef

595. SavagnerP. The epithelial‐mesenchymal transition (EMT) phenomenon. Ann Oncol2010;21(Suppl 7):vii89. CrossRef

596. MadsenCD, SahaiE. Cancer dissemination–lessons from leukocytes. Dev Cell2010;19:13. CrossRef

597. RoussosET, CondeelisJS, PatsialouA. Chemotaxis in cancer. Nat Rev Cancer2011;11:573. CrossRef

598. FriedlP, LockerJ, SahaiE, et al.Classifying collective cancer cell invasion. Nat Cell Biol2012;14:777. CrossRef

599. NabeshimaK, InoueT, ShimaoY, et al.Front‐cell‐specific expression of membrane‐type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res2000;60:3364.

600. WolfK, WuYI, LiuY, et al.Multi‐step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol2007;9:893. CrossRef

601. MolnarB, LadanyiA, TankoL, et al.Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res2001;7:4080.

602. BrandtB, JunkerR, GriwatzC, et al.Isolation of prostate‐derived single cells and cell clusters from human peripheral blood. Cancer Res1996;56:4556.

603. HouJM, KrebsM, WardT, et al.Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol2011;178:989. CrossRef

604. Kats‐UgurluG, RoodinkI, de WeijertM, et al.Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J Pathol2009;219:287. CrossRef

605. EgebladM, NakasoneES, WerbZ. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell2010;18:884. CrossRef

606. JoyceJA, PollardJW. Microenvironmental regulation of metastasis. Nat Rev Cancer2009;9:239. CrossRef

607. QianBZ, PollardJW. Macrophage diversity enhances tumor progression and metastasis. Cell2010;141:39. CrossRef

608. GochevaV, WangHW, GadeaBB, et al.IL‐4 induces cathepsin protease activity in tumor‐associated macrophages to promote cancer growth and invasion. Genes Dev2010;24:241. CrossRef

609. HwangRF, MooreT, ArumugamT, et al.Cancer‐associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res2008;68:918. CrossRef

610. FukumuraD, XavierR, SugiuraT, et al.Tumor induction of VEGF promoter activity in stromal cells. Cell1998;94:715. CrossRef

611. CalonA, EspinetE, Palomo‐PonceS, et al.Dependency of colorectal cancer on a TGF‐beta‐driven program in stromal cells for metastasis initiation. Cancer Cell2012;22:571. CrossRef

612. FuL, ZhangC, ZhangLY, et al.Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta‐catenin signalling pathway. Gut2011;60:1635. CrossRef

613. WashingtonMK, BerlinJ, BrantonP, et al.Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum. Arch Pathol Lab Med2009;133:1539.

614. LabelleM, BegumS, HynesRO. Direct signaling between platelets and cancer cells induces an epithelial‐mesenchymal‐like transition and promotes metastasis. Cancer Cell2011;20:576. CrossRef

615. BorsigL, WongR, FeramiscoJ, et al.Heparin and cancer revisited: mechanistic connections involving platelets, P‐selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A2001;98:3352. CrossRef

616. KimYJ, BorsigL, VarkiNM, et al.P‐selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A1998;95:9325. CrossRef

617. NieswandtB, HafnerM, EchtenacherB, et al.Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res1999;59:1295.

618. PalumboJS, TalmageKE, MassariJV, et al.Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell‐mediated elimination of tumor cells. Blood2005;105:178. CrossRef

619. DoumaS, Van LaarT, ZevenhovenJ, et al.Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature2004;430:1034. CrossRef

620. AkilH, PerraudA, MelinC, et al.Fine‐tuning roles of endogenous brain‐derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS ONE2011;6:e25097. CrossRef

621. YuM, TingDT, StottSL, et al.RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature2012;487:510. CrossRef

622. AshworthTR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J1869;14:146.

623. ParkinsonDR, DracopoliN, PettyBG, et al.Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med2012;10:138. CrossRef

624. CohenSJ, PuntCJ, IannottiN, et al.Relationship of circulating tumor cells to tumor response, progression‐free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol2008;26:3213. CrossRef

625. AggarwalC, MeropolNJ, PuntCJ, et al.Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann Oncol2013;24:420. CrossRef

626. UenYH, LinSR, WuDC, et al.Prognostic significance of multiple molecular markers for patients with stage II colorectal cancer undergoing curative resection. Ann Surg2007;246:1040. CrossRef

627. WangJY, LinSR, WuDC, et al.Multiple molecular markers as predictors of colorectal cancer in patients with normal perioperative serum carcinoembryonic antigen levels. Clin Cancer Res2007;13:2406. CrossRef

628. RahbariNN, AignerM, ThorlundK, et al.Meta‐analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology2010;138:1714. CrossRef

629. Groot KoerkampB, RahbariNN, BuchlerMW, et al.Circulating tumor cells and prognosis of patients with resectable colorectal liver metastases or widespread metastatic colorectal cancer: a meta‐analysis. Ann Surg Oncol2013;20:2156. CrossRef

630. FanST, YangZF, HoDW, et al.Prediction of posthepatectomy recurrence of hepatocellular carcinoma by circulating cancer stem cells: a prospective study. Ann Surg2011;254:569. CrossRef

631. BidardFC, HuguetF, LouvetC, et al.Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Ann Oncol2013;24:2057. CrossRef

632. WuCH, LinSR, YuFJ, et al.Development of a high‐throughput membrane‐array method for molecular diagnosis of circulating tumor cells in patients with gastric cancers. Int J Cancer2006;119:373. CrossRef

633. UenosonoY, ArigamiT, KozonoT, et al.Clinical significance of circulating tumor cells in peripheral blood from patients with gastric cancer. Cancer2013;119:3984. CrossRef

634. PantelK, DeneveE, NoccaD, et al.Circulating epithelial cells in patients with benign colon diseases. Clin Chem2012;58:936. CrossRef

635. HardinghamJE, HewettPJ, SageRE, et al.Molecular detection of blood‐borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int J Cancer2000;89:8. CrossRef

636. HusemannY, GeiglJB, SchubertF, et al.Systemic spread is an early step in breast cancer. Cancer Cell2008;13:58. CrossRef

637. YuM, StottS, TonerM, et al.Circulating tumor cells: approaches to isolation and characterization. J Cell Biol2011;192:373. CrossRef

638. MaheswaranS, SequistLV, NagrathS, et al.Detection of mutations in EGFR in circulating lung‐cancer cells. N Engl J Med2008;359:366. CrossRef

639. ChenYF, WangJY, WuCH, et al.Detection of circulating cancer cells with K‐ras oncogene using membrane array. Cancer Lett2005;229:115. CrossRef

640. Di FioreF, CharbonnierF, LefebureB, et al.Clinical interest of KRAS mutation detection in blood for anti‐EGFR therapies in metastatic colorectal cancer. Br J Cancer2008;99:551. CrossRef

641. YenLC, YehYS, ChenCW, et al.Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res2009;15:4508. CrossRef

642. GaschC, BauernhoferT, PichlerM, et al.Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin Chem2013;59:252. CrossRef

643. HeitzerE, AuerM, GaschC, et al.Complex tumor genomes inferred from single circulating tumor cells by array‐CGH and next‐generation sequencing. Cancer Res2013;73:2965. CrossRef

644. BaccelliI, SchneeweissA, RiethdorfS, et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol2013;31:539. CrossRef

645. ZhangL, RidgwayLD, WetzelMD, et al.The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med2013;5:180ra48. CrossRef

646. KangY, PantelK. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell2013;23:573. CrossRef

647. PagetS. The Distribution of secondary growths in cancer of the breast. Lancet1889;133:571. CrossRef

648. DomanskaUM, KruizingaRC, NagengastWB, et al.A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer2013;49:219. CrossRef

649. MullerA, HomeyB, SotoH, et al.Involvement of chemokine receptors in breast cancer metastasis. Nature2001;410:50. CrossRef

650. KaifiJT, YekebasEF, SchurrP, et al.Tumor‐cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst2005;97:1840. CrossRef

651. GoutS, TremblayPL, HuotJ. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis2008;25:335. CrossRef

652. AbramsHL, SpiroR, GoldsteinN. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer1950;3:74. CrossRef

653. DisibioG, FrenchSW. Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med2008;132:931.

654. EnzingerPC, MayerRJ. Esophageal cancer. N Engl J Med2003;349:2241. CrossRef

655. HessKR, VaradhacharyGR, TaylorSH, et al.Metastatic patterns in adenocarcinoma. Cancer2006;106:1624. CrossRef

656. YachidaS, Iacobuzio‐DonahueCA. The pathology and genetics of metastatic pancreatic cancer. Arch Pathol Lab Med2009;133:413.

657. ErlerJT, BennewithKL, CoxTR, et al.Hypoxia‐induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell2009;15:35. CrossRef

658. HiratsukaS, NakamuraK, IwaiS, et al.MMP9 induction by vascular endothelial growth factor receptor‐1 is involved in lung‐specific metastasis. Cancer Cell2002;2:289. CrossRef

659. HiratsukaS, WatanabeA, AburataniH, et al.Tumour‐mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol2006;8:1369. CrossRef

660. HiratsukaS, WatanabeA, SakuraiY, et al.The S100A8‐serum amyloid A3‐TLR4 paracrine cascade establishes a pre‐metastatic phase. Nat Cell Biol2008;10:1349. CrossRef

661. KaplanRN, RibaRD, ZacharoulisS, et al.VEGFR1‐positive haematopoietic bone marrow progenitors initiate the pre‐metastatic niche. Nature2005;438:820. CrossRef

662. El AndaloussiS, MagerI, BreakefieldXO, et al.Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov2013;12:347. CrossRef

663. PeinadoH, AleckovicM, LavotshkinS, et al.Melanoma exosomes educate bone marrow progenitor cells toward a pro‐metastatic phenotype through MET. Nat Med2012;18:883. CrossRef

664. GrangeC, TapparoM, CollinoF, et al.Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res2011;71:5346. CrossRef

665. LiuD, TrojanowiczB, YeL, et al.The invasion and metastasis promotion role of CD97 small isoform in gastric carcinoma. PLoS ONE2012;7:e39989. CrossRef

666. ParkHJ, GusarovaG, WangZ, et al.Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med2011;3:21. CrossRef

667. ZhangY, DavisC, RyanJ, et al.Development and characterization of a reliable mouse model of colorectal cancer metastasis to the liver. Clin Exp Metastasis2013;30:903. CrossRef

668. JungT, CastellanaD, KlingbeilP, et al.CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia2009;11:1093. CrossRef

669. KoopS, SchmidtEE, MacDonaldIC, et al.Independence of metastatic ability and extravasation: metastatic ras‐transformed and control fibroblasts extravasate equally well. Proc Natl Acad Sci U S A1996;93:11080. CrossRef

670. PodsypaninaK, DuYC, JechlingerM, et al.Seeding and propagation of untransformed mouse mammary cells in the lung. Science2008;321:1841. CrossRef

671. StoletovK, KatoH, ZardouzianE, et al.Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci2010;123:2332. CrossRef

672. WolfMJ, HoosA, BauerJ, et al.Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2‐Stat5 and p38MAPK pathway. Cancer Cell2012;22:91. CrossRef

673. SchumacherD, StrilicB, SivarajKK, et al.Platelet‐derived nucleotides promote tumor‐cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell2013;24:130. CrossRef

674. GossPE, ChambersAF. Does tumour dormancy offer a therapeutic target?Nat Rev Cancer2010;10:871. CrossRef

675. NakagawaH, LiyanarachchiS, DavuluriRV, et al.Role of cancer‐associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene2004;23:7366. CrossRef

676. BudhuA, ForguesM, YeQH, et al.Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell2006;10:99. CrossRef

677. ZvibelI, BrillS, HalpernZ, et al.Hepatocyte extracellular matrix modulates expression of growth factors and growth factor receptors in human colon cancer cells. Exp Cell Res1998;245:123. CrossRef

678. XuZ, VonlaufenA, PhillipsPA, et al.Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol2010;177:2585. CrossRef

679. WellsA, GriffithL, WellsJZ, et al.The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res2013;73:3811. CrossRef

680. MengS, TripathyD, FrenkelEP, et al.Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res2004;10:8152. CrossRef

681. Aguirre‐GhisoJA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer2007;7:834. CrossRef

682. Alix‐PanabieresC, RiethdorfS, PantelK. Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res2008;14:5013. CrossRef

683. MescoliC, AlbertoniL, PucciarelliS, et al.Isolated tumor cells in regional lymph nodes as relapse predictors in stage I and II colorectal cancer. J Clin Oncol2012;30:965. CrossRef

684. RahbariNN, BorkU, MotschallE, et al.Molecular detection of tumor cells in regional lymph nodes is associated with disease recurrence and poor survival in node‐negative colorectal cancer: a systematic review and meta‐analysis. J Clin Oncol2012;30:60. CrossRef

685. FeinMR, EgebladM. Caught in the act: revealing the metastatic process by live imaging. Dis Model Mech2013;6:580. CrossRef

686. KleinCA. Framework models of tumor dormancy from patient‐derived observations. Curr Opin Genet Dev2011;21:42. CrossRef

687. DemicheliR, AbbattistaA, MiceliR, et al.Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat1996;41:177. CrossRef

688. RetskyMW, DemicheliR, HrusheskyWJ, et al.Dormancy and surgery‐driven escape from dormancy help explain some clinical features of breast cancer. APMIS2008;116:730. CrossRef

689. KienleP, KochM. Minimal residual disease in gastrointestinal cancer. Semin Surg Oncol2001;20:282. CrossRef

690. StoeckleinNH, HoschSB, BezlerM, et al.Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell2008;13:441. CrossRef

691. HeissMM, SimonEH, BeyerBC, et al.Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance of urokinase receptor expression by disseminated tumor cells in the bone marrow. J Clin Oncol2002;20:2005. CrossRef

692. Aguirre‐GhisoJA, BragadoP, SosaMS. Metastasis awakening: targeting dormant cancer. Nat Med2013;19:276. CrossRef

693. PolzerB, KleinCA. Metastasis awakening: the challenges of targeting minimal residual cancer. Nat Med2013;19:274. CrossRef

694. HenselJA, FlaigTW, TheodorescuD. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol2013;10:41. CrossRef

695. HolmgrenL, O'ReillyMS, FolkmanJ. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med1995;1:149. CrossRef

696. KienastY, von BaumgartenL, FuhrmannM, et al.Real‐time imaging reveals the single steps of brain metastasis formation. Nat Med2010;16:116. CrossRef

697. EylesJ, PuauxAL, WangX, et al.Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest2010;120:2030. CrossRef

698. FearonER, VogelsteinB. A genetic model for colorectal tumorigenesis. Cell1990;61:759. CrossRef

699. FouldsL. The experimental study of tumor progression: a review. Cancer Res1954;14:327.

700. ValastyanS, WeinbergRA. Tumor metastasis: molecular insights and evolving paradigms. Cell2011;147:275. CrossRef

701. KleinCA. Parallel progression of primary tumours and metastases. Nat Rev Cancer2009;9:302. CrossRef

702. DingL, EllisMJ, LiS, et al.Genome remodelling in a basal‐like breast cancer metastasis and xenograft. Nature2010;464:999. CrossRef

703. JonesS, ChenWD, ParmigianiG, et al.Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A2008;105:4283. CrossRef

704. LiuW, LaitinenS, KhanS, et al.Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med2009;15:559. CrossRef

705. SchardtJA, MeyerM, HartmannCH, et al.Genomic analysis of single cytokeratin‐positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell2005;8:227. CrossRef

706. Schmidt‐KittlerO, RaggT, DaskalakisA, et al.From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A2003;100:7737. CrossRef

707. WeckermannD, PolzerB, RaggT, et al.Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J Clin Oncol2009;27:1549. CrossRef

708. GoasguenN, de ChaisemartinC, BrouquetA, et al.Evidence of heterogeneity within colorectal liver metastases for allelic losses, mRNA level expression and in vitro response to chemotherapeutic agents. Int J Cancer2010;127:1028. CrossRef

709. van KesselCS, SamimM, KoopmanM, et al.Radiological heterogeneity in response to chemotherapy is associated with poor survival in patients with colorectal liver metastases. Eur J Cancer2013;49:2486. CrossRef

710. DeNardoDG, AndreuP, CoussensLM. Interactions between lymphocytes and myeloid cells regulate pro‐ versus anti‐tumor immunity. Cancer Metastasis Rev2010;29:309. CrossRef

711. GrivennikovSI, GretenFR, KarinM. Immunity, inflammation, and cancer. Cell2010;140:883. CrossRef

712. TrinchieriG. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol2012;30:677. CrossRef

713. WangD, DuboisRN. Eicosanoids and cancer. Nat Rev Cancer2010;10:181. CrossRef

714. GabrilovichDI, NagarajS. Myeloid‐derived suppressor cells as regulators of the immune system. Nat Rev Immunol2009;9:162. CrossRef

715. TalmadgeJE, GabrilovichDI. History of myeloid‐derived suppressor cells. Nat Rev Cancer2013;13:739. CrossRef

716. GabitassRF, AnnelsNE, StockenDD, et al.Elevated myeloid‐derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin‐13. Cancer Immunol Immunother2011;60:1419. CrossRef

717. Mundy‐BosseBL, YoungGS, BauerT, et al.Distinct myeloid suppressor cell subsets correlate with plasma IL‐6 and IL‐10 and reduced interferon‐alpha signaling in CD4(+) T cells from patients with GI malignancy. Cancer Immunol Immunother2011;60:1269. CrossRef

718. SolitoS, FalisiE, Diaz‐MonteroCM, et al.A human promyelocytic‐like population is responsible for the immune suppression mediated by myeloid‐derived suppressor cells. Blood2011;118:2254. CrossRef

719. SchetterAJ, HeegaardNH, HarrisCC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis2010;31:37. CrossRef

720. HussainSP, AmstadP, RajaK, et al.Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer‐prone chronic inflammatory disease. Cancer Res2000;60:3333.

721. Hvid‐JensenF, PedersenL, DrewesAM, et al.Incidence of adenocarcinoma among patients with Barrett's esophagus. N Engl J Med2011;365:1375. CrossRef

722. An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet1993;341:1359. CrossRef

723. AminJ, DoreGJ, O'ConnellDL, et al.Cancer incidence in people with hepatitis B or C infection: a large community‐based linkage study. J Hepatol2006;45:197. CrossRef

724. OmlandLH, FarkasDK, JepsenP, et al.Hepatitis C virus infection and risk of cancer: a population‐based cohort study. Clin Epidemiol2010;2:179. CrossRef

725. StraussR, TornerA, DubergAS, et al.Hepatocellular carcinoma and other primary liver cancers in hepatitis C patients in Sweden – a low endemic country. J Viral Hepat2008;15:531. CrossRef

726. EkbomA, HelmickC, ZackM, et al.Ulcerative colitis and colorectal cancer. A population‐based study. N Engl J Med1990;323:1228. CrossRef

727. GydeSN, PriorP, AllanRN, et al.Colorectal cancer in ulcerative colitis: a cohort study of primary referrals from three centres. Gut1988;29:206. CrossRef

728. BergquistA, EkbomA, OlssonR, et al.Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol2002;36:321. CrossRef

729. BaronJA, ColeBF, SandlerRS, et al.A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med2003;348:891. CrossRef

730. BenamouzigR, DeyraJ, MartinA, et al.Daily soluble aspirin and prevention of colorectal adenoma recurrence: one‐year results of the APACC trial. Gastroenterology2003;125:328. CrossRef

731. LoganRF, GraingeMJ, ShepherdVC, et al.Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology2008;134:29. CrossRef

732. SandlerRS, HalabiS, BaronJA, et al.A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med2003;348:883. CrossRef

733. ColeBF, LoganRF, HalabiS, et al.Aspirin for the chemoprevention of colorectal adenomas: meta‐analysis of the randomized trials. J Natl Cancer Inst2009;101:256. CrossRef

734. BenamouzigR, UzzanB, DeyraJ, et al.Prevention by daily soluble aspirin of colorectal adenoma recurrence: 4‐year results of the APACC randomised trial. Gut2012;61:255. CrossRef

735. EberhartCE, CoffeyRJ, RadhikaA, et al.Up‐regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology1994;107:1183.

736. WangD, DuBoisRN. The role of anti‐inflammatory drugs in colorectal cancer. Annu Rev Med2013;64:131. CrossRef

737. BuchananFG, GordenDL, MattaP, et al.Role of beta‐arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A2006;103:1492. CrossRef

738. BuchananFG, WangD, BargiacchiF, et al.Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem2003;278:35451. CrossRef

739. PaiR, SoreghanB, SzaboIL, et al.Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med2002;8:289. CrossRef

740. WangD, WangH, ShiQ, et al.Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator‐activated receptor delta. Cancer Cell2004;6:285. CrossRef

741. WangD, BuchananFG, WangH, et al.Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras‐mitogen‐activated protein kinase cascade. Cancer Res2005;65:1822. CrossRef

742. CastelloneMD, TeramotoH, WilliamsBO, et al.Prostaglandin E2 promotes colon cancer cell growth through a Gs‐axin‐beta‐catenin signaling axis. Science2005;310:1504. CrossRef

743. ShaoJ, JungC, LiuC, et al.Prostaglandin E2 Stimulates the beta‐catenin/T cell factor‐dependent transcription in colon cancer. J Biol Chem2005;280:26565. CrossRef

744. SonoshitaM, TakakuK, SasakiN, et al.Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med2001;7:1048. CrossRef

745. XiaD, WangD, KimSH, et al.Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat Med2012;18:224. CrossRef

746. ArberN, EagleCJ, SpicakJ, et al.Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med2006;355:885. CrossRef

747. BaronJA, SandlerRS, BresalierRS, et al.A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology2006;131:1674. CrossRef

748. BertagnolliMM, EagleCJ, ZauberAG, et al.Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med2006;355:873. CrossRef

749. BresalierRS, SandlerRS, QuanH, et al.Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med2005;352:1092. CrossRef

750. SolomonSD, McMurrayJJ, PfefferMA, et al.Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med2005;352:1071. CrossRef

751. BertagnolliMM, EagleCJ, ZauberAG, et al.Five‐year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res (Phila)2009;2:310. CrossRef

752. ElwoodPC, GallagherAM, DuthieGG, et al.Aspirin, salicylates, and cancer. Lancet2009;373:1301. CrossRef

753. U.S. Preventive Services Task Force. Routine aspirin or nonsteroidal anti‐inflammatory drugs for the primary prevention of colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med2007;146:361. CrossRef

754. RothwellPM, WilsonM, ElwinCE, et al.Long‐term effect of aspirin on colorectal cancer incidence and mortality: 20‐year follow‐up of five randomised trials. Lancet2010;376:1741. CrossRef

755. AlgraAM, RothwellPM. Effects of regular aspirin on long‐term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol2012;13:518. CrossRef

756. BurnJ, GerdesAM, MacraeF, et al.Long‐term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet2011;378:2081. CrossRef

757. ClelandJG. Does aspirin really reduce the risk of colon cancer?Lancet2012;379:1586, 1587. CrossRef

758. JankowskiJ, BarrH, MoayyediP. Does aspirin really reduce the risk of colon cancer?Lancet2012;379:1586. CrossRef

759. RothwellPM, FowkesFG, BelchJF, et al.Effect of daily aspirin on long‐term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet2011;377:31. CrossRef

760. RothwellPM, WilsonM, PriceJF, et al.Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet2012;379:1591. CrossRef

761. ChanAT, OginoS, FuchsCS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA2009;302:649. CrossRef

762. ChanAT, OginoS, FuchsCS. Aspirin and the risk of colorectal cancer in relation to the expression of COX‐2. N Engl J Med2007;356:2131. CrossRef

763. ThunMJ, JacobsEJ, PatronoC. The role of aspirin in cancer prevention. Nat Rev Clin Oncol2012;9:259. CrossRef

764. DomingoE, ChurchDN, SieberO, et al.Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti‐inflammatory drug therapy in colorectal cancer. J Clin Oncol2013;31:4297. CrossRef

765. LiaoX, LochheadP, NishiharaR, et al.Aspirin use, tumor PIK3CA mutation, and colorectal‐cancer survival. N Engl J Med2012;367:1596. CrossRef

766. NishiharaR, LochheadP, KuchibaA, et al.Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA2013;309:2563. CrossRef

767. MeyskensFLJr, McLarenCE, PelotD, et al.Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo‐controlled, double‐blind trial. Cancer Prev Res (Phila)2008;1:32. CrossRef