Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Drug metabolism, transport, and pharmacogenomics

1. KockK, BrouwerKL. A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther2012;92:599. CrossRef

2. KlaassenCD, AleksunesLM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev2010;62:1. CrossRef

3. HedigerMA, RomeroMF, PengJB, et al.The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch2004;447:465. CrossRef

4. SchinkelAH, JonkerJW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev2003;55:3. CrossRef

5. GuengerichFP, WuZL, BartlesonCJ. Function of human cytochrome P450s: characterization of the orphans. Biochem Biophys Res Commun2005;338:465. CrossRef

6. WilkinsonGR. Drug metabolism and variability among patients in drug response. N Engl J Med2005;352:2211. CrossRef

7. NelsonDR, SchulerMA, PaquetteSM, et al.Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol2004;135:756. CrossRef

8. ZhangQY, DunbarD, OstrowskaA, et al.Characterization of human small intestinal cytochromes P‐450. Drug Metab Dispos1999;27:804.

9. ZangerUM, SchwabM. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther2013;138:103. CrossRef

10. DingX, KaminskyLS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue‐selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol2003;43:149. CrossRef

11. PaineMF, Schmiedlin‐RenP, WatkinsPB. Cytochrome P‐450 1A1 expression in human small bowel: interindividual variation and inhibition by ketoconazole. Drug Metab Dispos1999;27:360.

12. GuengerichFP, ShimadaT. Activation of procarcinogens by human cytochrome P450 enzymes. Mutat Res1998;400:201. CrossRef

13. ShimadaT, Fujii‐KuriyamaY. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci2004;95:1. CrossRef

14. BuchthalJ, GrundKE, BuchmannA, et al.Induction of cytochrome P4501A by smoking or omeprazole in comparison with UDP‐glucuronosyltransferase in biopsies of human duodenal mucosa. Eur J Clin Pharmacol1995;47:431. CrossRef

15. FontanaRJ, LownKS, PaineMF, et al.Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P‐glycoprotein levels in healthy volunteers. Gastroenterology1999;117:89. CrossRef

16. LoboED, BergstromRF, ReddyS, et al.In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet2008;47:191. CrossRef

17. ZhouSF, ChanE, ZhouZW, et al.Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr Drug Metab2009;10:713. CrossRef

18. ZhouSF, WangB, YangLP, et al.Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev2010;42:268. CrossRef

19. ShimadaT, YamazakiH, MimuraM, et al.Interindividual variations in human liver cytochrome P‐450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther1994;270:414.

20. DiYM, ChowVD, YangLP, et al.Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab2009;10:754. CrossRef

21. ItohM, NakajimaM, HigashiE, et al.Induction of human CYP2A6 is mediated by the pregnane X receptor with peroxisome proliferator‐activated receptor‐gamma coactivator 1alpha. J Pharmacol Exp Ther2006;319:693. CrossRef

22. OnicaT, NicholsK, LarinM, et al.Dexamethasone‐mediated up‐regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4 alpha to the proximal promoter. Mol Pharmacol2008;73:451. CrossRef

23. BenowitzNL, Lessov‐SchlaggarCN, SwanGE, et al.Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther2006;79:480. CrossRef

24. HigashiE, FukamiT, ItohM, et al.Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos2007;35:1935. CrossRef

25. MalaiyandiV, SellersEM, TyndaleRF. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther2005;77:145. CrossRef

26. KingJ, AbergJA. Clinical impact of patient population differences and genomic variation in efavirenz therapy. AIDS2008;22:1709. CrossRef

27. PenzakSR, KabuyeG, MugyenyiP, et al.Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV‐infected patients in Uganda. HIV Med2007;8:86. CrossRef

28. BlackJL, LitzowMR, HoganWJ, et al.Correlation of CYP2B6, CYP2C19, ABCC4 and SOD2 genotype with outcomes in allogeneic blood and marrow transplant patients. Leuk Res2012;36:59. CrossRef

29. LeeCR, GoldsteinJA, PieperJA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in‐vitro and human data. Pharmacogenetics2002;12:251. CrossRef

30. LaiXS, YangLP, LiXT, et al.Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms. Curr Drug Metab2009;10:1009. CrossRef

31. HertzDL, Motsinger‐ReifAA, DrobishA, et al.CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat2012;134:401. CrossRef

32. RettieAE, JonesJP. Clinical and toxicological relevance of CYP2C9: drug‐drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol2005;45:477. CrossRef

33. FurutaT, SagehashiY, ShiraiN, et al.Influence of CYP2C19 polymorphism and Helicobacter pylori genotype determined from gastric tissue samples on response to triple therapy for H pylori infection. Clin Gastroenterol Hepatol2005;3:564. CrossRef

34. de WaziersI, CugnencPH, YangCS, et al.Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther1990;253:387.

35. PaineMF, HartHL, LudingtonSS, et al.The human intestinal cytochrome P450 “pie”. Drug Metab Dispos2006;34:880. CrossRef

36. CaracoY, ShellerJ, WoodAJ. Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine's respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther1997;281:330.

37. KimK, JohnsonJA, DerendorfH. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol2004;44:1083. CrossRef

38. Ingelman‐SundbergM. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J2005;5:6. CrossRef

39. StevensJC, HinesRN, GuC, et al.Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther2003;307:573. CrossRef

40. HinesRN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther2008;118:250. CrossRef

41. PaineMF, KhalighiM, FisherJM, et al.Characterization of interintestinal and intraintestinal variations in human CYP3A‐dependent metabolism. J Pharmacol Exp Ther1997;283:1552.

42. LownKS, KolarsJC, ThummelKE, et al.Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos1994;22:947.

43. von RichterO, BurkO, FrommMF, et al.Cytochrome P450 3A4 and P‐glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther2004;75:172. CrossRef

44. FrommMF, BusseD, KroemerHK, et al.Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology1996;24:796. CrossRef

45. KolarsJC, AwniWM, MerionRM, et al.First‐pass metabolism of cyclosporin by the gut. Lancet1991;338:1488. CrossRef

46. PaineMF, ShenDD, KunzeKL, et al.First‐pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther1996;60:14. CrossRef

47. GorskiJC, JonesDR, Haehner‐DanielsBD, et al.The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther1998;64:133. CrossRef

48. HuangSM, HallSD, WatkinsP, et al.Drug interactions with herbal products and grapefruit juice: a conference report. Clin Pharmacol Ther2004;75:1. CrossRef

49. BaileyDG, MalcolmJ, ArnoldO, et al.Grapefruit juice‐drug interactions. Br J Clin Pharmacol1998;46:101. CrossRef

50. BaileyDG, DresserG, ArnoldJM. Grapefruit‐medication interactions: forbidden fruit or avoidable consequences?CMAJ2013;185:309. CrossRef

51. Schmiedlin‐RenP, EdwardsDJ, FitzsimmonsME, et al.Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism‐based inactivation by furanocoumarins. Drug Metab Dispos1997;25:1228.

52. PaineMF, CrissAB, WatkinsPB. Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J Pharmacol Exp Ther2005;312:1151. CrossRef

53. GuoLQ, FukudaK, OhtaT, et al.Role of furanocoumarin derivatives on grapefruit juice‐mediated inhibition of human CYP3A activity. Drug Metab Dispos2000;28:766.

54. LownKS, BaileyDG, FontanaRJ, et al.Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest1997;99:2545. CrossRef

55. MalhotraS, BaileyDG, PaineMF, et al.Seville orange juice‐felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins. Clin Pharmacol Ther2001;69:14. CrossRef

56. MoulySJ, MathenyC, PaineMF, et al.Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther2005;78:605. CrossRef

57. LinYS, DowlingAL, QuigleySD, et al.Co‐regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol2002;62:162. CrossRef

58. HuangW, LinYS, McConnDJ2nd, et al.Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos2004;32:1434. CrossRef

59. IsoherranenN, LudingtonSR, GivensRC, et al.The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate‐dependent: an in vitro‐in vivo evaluation. Drug Metab Dispos2008;36:146. CrossRef

60. KoukouritakiSB, HinesRN. Flavin‐containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics2005;6:807. CrossRef

61. KoukouritakiSB, SimpsonP, YeungCK, et al.Human hepatic flavin‐containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res2002;51:236. CrossRef

62. YeungCK, LangDH, ThummelKE, et al.Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos2000;28:1107.

63. KimYM, ZieglerDM. Size limits of thiocarbamides accepted as substrates by human flavin‐containing monooxygenase 1. Drug Metab Dispos2000;28:1003.

64. ClementB, LustigKL, ZieglerDM. Oxidation of desmethylpromethazine catalyzed by pig liver flavin‐containing monooxygenase. Number and nature of metabolites. Drug Metab Dispos1993;21:24.

65. CashmanJR, CelestialJR, LeachA, et al.Tertiary amines related to brompheniramine: preferred conformations for N‐oxygenation by the hog liver flavin‐containing monooxygenase. Pharm Res1993;10:1097. CrossRef

66. OverbyLH, CarverGC, PhilpotRM. Quantitation and kinetic properties of hepatic microsomal and recombinant flavin‐containing monooxygenases 3 and 5 from humans. Chem Biol Interact1997;106:29. CrossRef

67. LomriN, GuQ, CashmanJR. Molecular cloning of the flavin‐containing monooxygenase (form II) cDNA from adult human liver. Proc Natl Acad Sci U S A1992;89:1685. CrossRef

68. CashmanJR, ParkSB, YangZC, et al.Chemical, enzymatic, and human enantioselective S‐oxygenation of cimetidine. Drug Metab Dispos1993;21:587.

69. KangJH, ChungWG, LeeKH, et al.Phenotypes of flavin‐containing monooxygenase activity determined by ranitidine N‐oxidation are positively correlated with genotypes of linked FM03 gene mutations in a Korean population. Pharmacogenetics2000;10:67. CrossRef

70. JancovaP, AnzenbacherP, AnzenbacherovaE. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub2010;154:103. CrossRef

71. PaulD, StandiferKM, InturrisiCE, et al.Pharmacological characterization of morphine‐6 beta‐glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther1989;251:477.

72. WellsPG, MackenziePI, ChowdhuryJR, et al.Glucuronidation and the UDP‐glucuronosyltransferases in health and disease. Drug Metab Dispos2004;32:281. CrossRef

73. TukeyRH, StrassburgCP. Human UDP glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol2000;40:581. CrossRef

74. KingCD, RiosGR, GreenMD, et al.UDP‐glucuronosyltransferases. Curr Drug Metab2000;1:143. CrossRef

75. GregoryPA, LewinskyRH, Gardner‐StephenDA, et al.Regulation of UDP glucuronosyltransferases in the gastrointestinal tract. Toxicol Appl Pharmacol2004;199:354. CrossRef

76. TukeyRH, StrassburgCP. Genetic multiplicity of the human UDP‐glucuronosyltransferases and regulation in the gastrointestinal tract. Mol Pharmacol2001;59:405.

77. WuB, KulkarniK, BasuS, et al.First‐pass metabolism via UDP‐glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci2011;100:3655. CrossRef

78. AndoY, HasegawaY. Clinical pharmacogenetics of irinotecan (CPT‐11). Drug Metab Rev2005;37:565. CrossRef

79. PiscitelliSC, GallicanoKD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med2001;344:984. CrossRef

80. TironaRG, KimRB. Nuclear receptors and drug disposition gene regulation. J Pharm Sci2005;94:1169. CrossRef

81. PrueksaritanontT, SubramanianR, FangX, et al.Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos2002;30:505. CrossRef

82. WilliamsJA, HylandR, JonesBC, et al.Drug‐drug interactions for UDP‐glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos2004;32:1201. CrossRef

83. KiangTK, EnsomMH, ChangTK. UDP‐glucuronosyltransferases and clinical drug‐drug interactions. Pharmacol Ther2005;106:97. CrossRef

84. RitterJK. Roles of glucuronidation and UDP‐glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact2000;129:171. CrossRef

85. BoelsterliUA. Xenobiotic acyl glucuronides and acyl CoA thioesters as protein‐reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr Drug Metab2002;3:439. CrossRef

86. StrangeRC, SpiteriMA, RamachandranS, et al.Glutathione‐S‐transferase family of enzymes. Mutat Res2001;482:21. CrossRef

87. KaminskyLS, ZhangQY. The small intestine as a xenobiotic‐metabolizing organ. Drug Metab Dispos2003;31:1520. CrossRef

88. GibbsJP, CzerwinskiM, SlatteryJT. Busulfan‐glutathione conjugation catalyzed by human liver cytosolic glutathione S‐transferases. Cancer Res1996;56:3678.

89. HayesJD, FlanaganJU, JowseyIR. Glutathione transferases. Annu Rev Pharmacol Toxicol2005;45:51. CrossRef

90. SimonT, BecquemontL, Mary‐KrauseM, et al.Combined glutathione‐S‐transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther2000;67:432. CrossRef

91. WangLQ, JamesMO. Inhibition of sulfotransferases by xenobiotics. Curr Drug Metab2006;7:83. CrossRef

92. GamageN, BarnettA, HempelN, et al.Human sulfotransferases and their role in chemical metabolism. Toxicol Sci2006;90:5. CrossRef

93. LindsayJ, WangLL, LiY, et al.Structure, function and polymorphism of human cytosolic sulfotransferases. Curr Drug Metab2008;9:99. CrossRef

94. RichesZ, StanleyEL, BloomerJC, CoughtrieMW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos2009;37:2255. CrossRef

95. Runge‐MorrisM, KocarekTA. Regulation of sulfotransferases by xenobiotic receptors. Curr Drug Metab2005;6:299. CrossRef

96. LiAP, HartmanNR, LuC, et al.Effects of cytochrome P450 inducers on 17alpha‐ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol1999;48:733.

97. SimE, LackN, WangCJ, et al.Arylamine N‐acetyltransferases: structural and functional implications of polymorphisms. Toxicology2008;254:170. CrossRef

98. WalkerK, GinsbergG, HattisD, et al.Genetic polymorphism in N‐Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev2009;12:440. CrossRef

99. HuangYS, ChernHD, SuWJ, et al.Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug‐induced hepatitis. Hepatology2003;37:924. CrossRef

100. HeinDW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res2002;506–507:65. CrossRef

101. ButcherNJ, MinchinRF. Arylamine N‐acetyltransferase 1: a novel drug target in cancer development. Pharmacol Rev2012;64:147. CrossRef

102. CoulthardS, HogarthL. The thiopurines: an update. Invest New Drugs2005;23:523. CrossRef

103. FordLT, BergJD. Thiopurine S‐methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J Clin Pathol2010;63:288. CrossRef

104. RellingMV, GardnerEE, SandbornWJ, et al.Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther2013;93:324. CrossRef

105. DeGorterMK, XiaCQ, YangJJ, et al.Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol2012;52:249. CrossRef

106. GiacominiKM, HuangSM, TweedieDJ, et al.Membrane transporters in drug development. Nat Rev Drug Discov2010;9:215. CrossRef

107. KonigJ, MullerF, FrommMF. Transporters and drug‐drug interactions: important determinants of drug disposition and effects. Pharmacol Rev2013;65:944. CrossRef

108. ShugartsS, BenetLZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res2009;26:2039. CrossRef

109. BorstP, ElferinkRO. Mammalian ABC transporters in health and disease. Annu Rev Biochem2002;71:537. CrossRef

110. RothM, ObaidatA, HagenbuchB. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol2012;165:1260. CrossRef

111. EstudanteM, MoraisJG, SoveralG, et al.Intestinal drug transporters: an overview. Adv Drug Deliv Rev2013;65:1340. CrossRef

112. HagenbuchB. Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther2010;87:39. CrossRef

113. HillgrenKM, KepplerD, ZurAA, et al.Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther2013;94:52. CrossRef

114. Zamek‐GliszczynskiMJ, HoffmasterKA, TweedieDJ, et al.Highlights from the International Transporter Consortium second workshop. Clin Pharmacol Ther2012;92:553. CrossRef

115. GlaeserH, BaileyDG, DresserGK, et al.Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther2007;81:362. CrossRef

116. MeierY, ElorantaJJ, DarimontJ, et al.Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos2007;35:590. CrossRef

117. KobayashiD, NozawaT, ImaiK, et al.Involvement of human organic anion transporting polypeptide OATP‐B (SLC21A9) in pH‐dependent transport across intestinal apical membrane. J Pharmacol Exp Ther2003;306:703. CrossRef

118. Kullak‐UblickGA, IsmairMG, StiegerB, et al.Organic anion‐transporting polypeptide B (OATP‐B) and its functional comparison with three other OATPs of human liver. Gastroenterology2001;120:525. CrossRef

119. AbeT, KakyoM, TokuiT, et al.Identification of a novel gene family encoding human liver‐specific organic anion transporter LST‐1. J Biol Chem1999;274:17159. CrossRef

120. HsiangB, ZhuY, WangZ, et al.A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver‐specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl‐CoA reductase inhibitor transporters. J Biol Chem1999;274:37161. CrossRef

121. KonigJ, CuiY, NiesAT, et al.A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol2000;278:G156.

122. KonigJ, CuiY, NiesAT, et al.Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem2000;275:23161. CrossRef

123. MahagitaC, GrasslSM, PiyachaturawatP, et al.Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH‐bile acid cotransport. Am J Physiol Gastrointest Liver Physiol2007;293:G271. CrossRef

124. FrancoR, CidlowskiJA. SLCO/OATP‐like transport of glutathione in FasL‐induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem2006;281:29542. CrossRef

125. LeutholdS, HagenbuchB, MohebbiN, et al.Mechanisms of pH‐gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol2009;296:C570. CrossRef

126. LiL, LeeTK, MeierPJ, et al.Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem1998;273:16184. CrossRef

127. LiL, MeierPJ, BallatoriN. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol2000;58:335.

128. SatlinLM, AminV, WolkoffAW. Organic anion transporting polypeptide mediates organic anion/HCO3‐ exchange. J Biol Chem1997;272:26340. CrossRef

129. GongIY, KimRB. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab Pharmacokinet2013;28:4. CrossRef

130. GuiC, HagenbuchB. Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1. Protein Sci2009;18:2298. CrossRef

131. NoeJ, PortmannR, BrunME, et al.Substrate‐dependent drug‐drug interactions between gemfibrozil, fluvastatin and other organic anion‐transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos2007;35:1308. CrossRef

132. TamaiI, NozawaT, KoshidaM, et al.Functional characterization of human organic anion transporting polypeptide B (OATP‐B) in comparison with liver‐specific OATP‐C. Pharm Res2001;18:1262. CrossRef

133. Rubio‐AliagaI, DanielH. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica2008;38:1022. CrossRef

134. ZieglerTR, Fernandez‐EstivarizC, GuLH, et al.Distribution of the H+/peptide transporter PepT1 in human intestine: up‐regulated expression in the colonic mucosa of patients with short‐bowel syndrome. Am J Clin Nutr2002;75:922.

135. IrieM, TeradaT, KatsuraT, et al.Computational modelling of H+‐coupled peptide transport via human PEPT1. J Physiol2005;565:429. CrossRef

136. BrandschM, KnutterI, Bosse‐DoeneckeE. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol2008;60:543. CrossRef

137. YoungJD, YaoSY, BaldwinJM, et al.The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med2013;34:529. CrossRef

138. GovindarajanR, BakkenAH, HudkinsKL, et al.In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Physiol Regul Integr Comp Physiol2007;293:R1809. CrossRef

139. GovindarajanR, EndresCJ, WhittingtonD, et al.Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich‐cultured human hepatocytes. Am J Physiol Gastrointest Liver Physiol2008;295:G570. CrossRef

140. YoungJD, YaoSY, SunL, et al.Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica2008;38:995. CrossRef

141. VickersMF, ZhangJ, VisserF, et al.Uridine recognition motifs of human equilibrative nucleoside transporters 1 and 2 produced in Saccharomyces cerevisiae. Nucleosides Nucleotides Nucleic Acids2004;23:361. CrossRef

142. YaoSY, NgAM, SundaramM, et al.Transport of antiviral 3′‐deoxy‐nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)‐insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol2001;18:161. CrossRef

143. SmithKM, NgAM, YaoSY, et al.Electrophysiological characterization of a recombinant human Na+‐coupled nucleoside transporter (hCNT1) produced in Xenopus oocytes. J Physiol2004;558:807. CrossRef

144. SmithKM, SlugoskiMD, LoewenSK, et al.The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation‐coupled nucleoside transport characteristics. J Biol Chem2005;280:25436. CrossRef

145. RitzelMW, YaoSY, NgAM, et al.Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol1998;15:203. CrossRef

146. Pastor‐AngladaM, Cano‐SoldadoP, Errasti‐MurugarrenE, et al.SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica2008;38:972. CrossRef

147. BarnesK, DobrzynskiH, FoppoloS, et al.Distribution and functional characterization of equilibrative nucleoside transporter‐4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res2006;99:510. CrossRef

148. XiaL, EngelK, ZhouM, et al.Membrane localization and pH‐dependent transport of a newly cloned organic cation transporter (PMAT) in kidney cells. Am J Physiol Renal Physiol2007;292:F682. CrossRef

149. EngelK, WangJ. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol2005;68:1397. CrossRef

150. ZhouM, XiaL, WangJ. Metformin transport by a newly cloned proton‐stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos2007;35:1956. CrossRef

151. BurckhardtG. Drug transport by organic anion transporters (OATs). Pharmacol Ther2012;136:106. CrossRef

152. EnomotoA, TakedaM, ShimodaM, et al.Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther2002;301:797. CrossRef

153. ShinHJ, AnzaiN, EnomotoA, et al.Novel liver‐specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology2007;45:1046. CrossRef

154. HanTK, EverettRS, ProctorWR, et al.Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco‐2 cell monolayers and enterocytes. Mol Pharmacol2013;84:182. CrossRef

155. MullerJ, LipsKS, MetznerL, et al.Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol2005;70:1851. CrossRef

156. NiesAT, HerrmannE, BromM, et al.Vectorial transport of the plant alkaloid berberine by double‐transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P‐glycoprotein (ABCB1). Naunyn Schmiedebergs Arch Pharmacol2008;376:449. CrossRef

157. KoepsellH, EndouH. The SLC22 drug transporter family. Pflugers Arch2004;447:666. CrossRef

158. NiesAT, KoepsellH, DammeK, et al.Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol2011;(201):105. CrossRef

159. KoepsellH, LipsK, VolkC. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res2007;24:1227. CrossRef

160. EnersonBE, DrewesLR. Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci2003;92:1531. CrossRef

161. MeredithD, ChristianHC. The SLC16 monocaboxylate transporter family. Xenobiotica2008;38:1072. CrossRef

162. MorrisME, FelmleeMA. Overview of the proton‐coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma‐hydroxybutyric acid. AAPS J2008;10:311. CrossRef

163. JuelC, HalestrapAP. Lactate transport in skeletal muscle – role and regulation of the monocarboxylate transporter. J Physiol1999;517:633. CrossRef

164. VarmaMV, AmblerCM, UllahM, et al.Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab2010;11:730. CrossRef

165. JulianoRL, LingV. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta1976;455:152. CrossRef

166. LingV, ThompsonLH. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol1974;83:103. CrossRef

167. RiordanJR, LingV. Purification of P‐glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem1979;254:12701.

168. CascorbiI. P‐glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol2011;(201):261. CrossRef

169. MoulyS, PaineMF. P‐glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res2003;20:1595. CrossRef

170. ThiebautF, TsuruoT, HamadaH, et al.Cellular localization of the multidrug‐resistance gene product P‐glycoprotein in normal human tissues. Proc Natl Acad Sci U S A1987;84:7735. CrossRef

171. ChoudhuriS, KlaassenCD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol2006;25:231. CrossRef

172. ZhouSF. Structure, function and regulation of P‐glycoprotein and its clinical relevance in drug disposition. Xenobiotica2008;38:802. CrossRef

173. GottesmanMM, PastanI. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem1993;62:385. CrossRef

174. UedaK, TaguchiY, MorishimaM. How does P‐glycoprotein recognize its substrates?Semin Cancer Biol1997;8:151. CrossRef

175. ColeSP, BhardwajG, GerlachJH, et al.Overexpression of a transporter gene in a multidrug‐resistant human lung cancer cell line. Science1992;258:1650. CrossRef

176. McGrathT, CenterMS. Adriamycin resistance in HL60 cells in the absence of detectable P‐glycoprotein. Biochem Biophys Res Commun1987;145:1171. CrossRef

177. MirskiSE, GerlachJH, ColeSP. Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res1987;47:2594.

178. DeeleyRG, WestlakeC, ColeSP. Transmembrane transport of endo‐ and xenobiotics by mammalian ATP‐binding cassette multidrug resistance proteins. Physiol Rev2006;86:849. CrossRef

179. KepplerD. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol2011;(201):299. CrossRef

180. BlokzijlH, van SteenpaalA, Vander BorghtS, et al.Up‐regulation and cytoprotective role of epithelial multidrug resistance‐associated protein 1 in inflammatory bowel disease. J Biol Chem2008;283:35630. CrossRef

181. FlensMJ, ZamanGJ, van der ValkP, et al.Tissue distribution of the multidrug resistance protein. Am J Pathol1996;148:1237.

182. PengKC, CluzeaudF, BensM, et al.Tissue and cell distribution of the multidrug resistance‐associated protein (MRP) in mouse intestine and kidney. J Histochem Cytochem1999;47:757. CrossRef

183. RoelofsenH, VosTA, SchippersIJ, et al.Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte‐derived cells. Gastroenterology1997;112:511. CrossRef

184. FrommMF, KauffmannHM, FritzP, et al.The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol2000;157:1575. CrossRef

185. KartenbeckJ, LeuschnerU, MayerR, et al.Absence of the canalicular isoform of the MRP gene‐encoded conjugate export pump from the hepatocytes in Dubin‐Johnson syndrome. Hepatology1996;23:1061.

186. NiesAT, KepplerD. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch2007;453:643. CrossRef

187. PaulusmaCC, KoolM, BosmaPJ, et al.A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin‐Johnson syndrome. Hepatology1997;25:1539. CrossRef

188. ZimmermannC, GutmannH, HruzP, et al.Mapping of multidrug resistance gene 1 and multidrug resistance‐associated protein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab Dispos2005;33:219. CrossRef

189. KoolM, van der LindenM, de HaasM, et al.MRP3, an organic anion transporter able to transport anti‐cancer drugs. Proc Natl Acad Sci U S A1999;96:6914. CrossRef

190. LangT, HitzlM, BurkO, et al.Genetic polymorphisms in the multidrug resistance‐associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics2004;14:155. CrossRef

191. SchefferGL, KoolM, de HaasM, et al.Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest2002;82:193. CrossRef

192. RiusM, NiesAT, Hummel‐EisenbeissJ, et al.Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology2003;38:374. CrossRef

193. GradhandU, LangT, SchaeffelerE, et al.Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J2008;8:42. CrossRef

194. BorstP, de WolfC, van de WeteringK. Multidrug resistance‐associated proteins 3, 4, and 5. Pflugers Arch2007;453:661. CrossRef

195. JedlitschkyG, KepplerD. Transport of leukotriene C4 and structurally related conjugates. Vitam Horm2002;64:153. CrossRef

196. KonigJ, NiesAT, CuiY, et al.Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2‐mediated drug resistance. Biochim Biophys Acta1999;1461:377. CrossRef

197. ColeSP, DeeleyRG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci2006;27:438. CrossRef

198. RothnieA, CallaghanR, DeeleyRG, et al.Role of GSH in estrone sulfate binding and translocation by the multidrug resistance protein 1 (MRP1/ABCC1). J Biol Chem2006;281:13906. CrossRef

199. DoyleLA, YangW, AbruzzoLV, et al.A multidrug resistance transporter from human MCF‐7 breast cancer cells. Proc Natl Acad Sci U S A1998;95:15665. CrossRef

200. MiyakeK, MickleyL, LitmanT, et al.Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone‐resistant cells: demonstration of homology to ABC transport genes. Cancer Res1999;59:8.

201. AllikmetsR, SchrimlLM, HutchinsonA, et al.A human placenta‐specific ATP‐binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res1998;58:5337.

202. AronicaE, GorterJA, RedekerS, et al.Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia2005;46:849. CrossRef

203. CoorayHC, BlackmoreCG, MaskellL, et al.Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport2002;13:2059. CrossRef

204. FetschPA, AbatiA, LitmanT, et al.Localization of the ABCG2 mitoxantrone resistance‐associated protein in normal tissues. Cancer Lett2006;235:84. CrossRef

205. MaliepaardM, SchefferGL, FaneyteIF, et al.Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res2001;61:3458.

206. BruyèreA, DeclèvesX, BouzomF, et al.Effect of variations in the amounts of P‐glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm2010;7:1596. CrossRef

207. PrasadB, LaiY, LinY, et al.Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype. J Pharm Sci2013;102:787. CrossRef

208. WangH, LeeEW, CaiX, et al.Membrane topology of the human breast cancer resistance protein (BCRP/ABCG2) determined by epitope insertion and immunofluorescence. Biochemistry2008;47:13778. CrossRef

209. KageK, TsukaharaS, SugiyamaT, et al.Dominant‐negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S‐S dependent homodimerization. Int J Cancer2002;97:626. CrossRef

210. LitmanT, JensenU, HansenA, et al.Use of peptide antibodies to probe for the mitoxantrone resistance‐associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta2002;1565:6. CrossRef

211. XuJ, LiuY, YangY, et al.Characterization of oligomeric human half‐ABC transporter ATP‐binding cassette G2. J Biol Chem2004;279:19781. CrossRef

212. IeiriI. Functional significance of genetic polymorphisms in P‐glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet2012;27:85. CrossRef

213. NiZ, BikadiZ, RosenbergMF, et al.Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab2010;11:603. CrossRef

214. KaliszczakM, AntonowD, PatelKI, et al.Optimization of the antitumor activity of sequence‐specific pyrrolobenzodiazepine derivatives based on their affinity for ABC transporters. AAPS J.2010;12:617. CrossRef

215. NakagawaH, SaitoH, IkegamiY, et al.Molecular modeling of new camptothecin analogues to circumvent ABCG2‐mediated drug resistance in cancer. Cancer Lett2006;234:81. CrossRef

216. YoshikawaM, IkegamiY, HayasakaS, et al.Novel camptothecin analogues that circumvent ABCG2‐associated drug resistance in human tumor cells. Int J Cancer2004;110:921. CrossRef

217. PolgarO, RobeyRW, BatesSE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol2008;4:1. CrossRef

218. OtsukaM, MatsumotoT, MorimotoR, et al.A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A2005;102:17923. CrossRef

219. DammeK, NiesAT, SchaeffelerE, et al.Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab Rev2011;43:499. CrossRef

220. EbertB, SeidelA, LampenA. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco‐2 cells and its induction by Ah‐receptor agonists. Carcinogenesis2005;26:1754. CrossRef

221. HagenbuchB, StiegerB. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med2013;34:396. CrossRef

222. ImaiY, IshikawaE, AsadaS, et al.Estrogen‐mediated post transcriptional down‐regulation of breast cancer resistance protein/ABCG2. Cancer Res2005;65:596. CrossRef

223. JigorelE, Le VeeM, Boursier‐NeyretC, et al.Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug‐sensing receptors in primary human hepatocytes. Drug Metab Dispos2006;34:1756. CrossRef

224. KamiyamaY, MatsubaraT, YoshinariK, et al.Role of human hepatocyte nuclear factor 4alpha in the expression of drug‐metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet2007;22:287. CrossRef

225. KuwanoM, OdaY, IzumiH, et al.The role of nuclear Y‐box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther2004;3:1485.

226. SaborowskiM, Kullak‐UblickGA, ElorantaJJ. The human organic cation transporter‐1 gene is transactivated by hepatocyte nuclear factor‐4alpha. J Pharmacol Exp Ther2006;317:778. CrossRef

227. SynoldTW, DussaultI, FormanBM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med2001;7:584. CrossRef

228. BacsoZ, NagyH, GodaK, et al.Raft and cytoskeleton associations of an ABC transporter: P‐glycoprotein. Cytometry A2004;61:105. CrossRef

229. LukerGD, PicaCM, KumarAS, et al.Effects of cholesterol and enantiomeric cholesterol on P‐glycoprotein localization and function in low‐density membrane domains. Biochemistry2000;39:7651. CrossRef

230. RadevaG, PeraboJ, SharomFJ. P‐Glycoprotein is localized in intermediate‐density membrane microdomains distinct from classical lipid rafts and caveolar domains. FEBS J2005;272:4924. CrossRef

231. Meyer dos SantosS, WeberCC, FrankeC, et al.Cholesterol: coupling between membrane microenvironment and ABC transporter activity. Biochem Biophys Res Commun2007;354:216. CrossRef

232. FenyvesiF, FenyvesiE, SzenteL, et al.P‐glycoprotein inhibition by membrane cholesterol modulation. Eur J Pharm Sci2008;34:236. CrossRef

233. KatoY, YoshidaK, WatanabeC, et al.Screening of the interaction between xenobiotic transporters and PDZ proteins. Pharm Res2004;21:1886. CrossRef

234. WangP, WangJJ, XiaoY, et al.Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem2005;280:30143. CrossRef

235. HardwickRN, FisherCD, CanetMJ, et al.Variations in ATP‐binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos2011;39:2395. CrossRef

236. MohrmannK, van EijndhovenMA, SchinkelAH, et al.Absence of N‐linked glycosylation does not affect plasma membrane localization of breast cancer resistance protein (BCRP/ABCG2). Cancer Chemother Pharmacol2005;56:344. CrossRef

237. SchinkelAH, KempS, DolleM, et al.N‐glycosylation and deletion mutants of the human MDR1 P‐glycoprotein. J Biol Chem1993;268:7474.

238. ZhangP, TianX, ChandraP, et al.Role of glycosylation in trafficking of Mrp2 in sandwich‐cultured rat hepatocytes. Mol Pharmacol2005;67:1334. CrossRef

239. TanakaK, XuW, ZhouF, et al.Role of glycosylation in the organic anion transporter OAT1. J Biol Chem2004;279:14961. CrossRef

240. KockK, KoenenA, GieseB, et al.Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C‐mediated internalization. J Biol Chem2010;285:11336. CrossRef

241. CoeI, ZhangY, McKenzieT, et al.PKC regulation of the human equilibrative nucleoside transporter, hENT1. FEBS Lett2002;517:201. CrossRef

242. NakagawaH, TamuraA, WakabayashiK, et al.Ubiquitin‐mediated proteasomal degradation of non‐synonymous SNP variants of human ABC transporter ABCG2. Biochem J2008;411:623. CrossRef

243. Wakabayashi‐NakaoK, TamuraA, FurukawaT, et al.Quality control of human ABCG2 protein in the endoplasmic reticulum: ubiquitination and proteasomal degradation. Adv Drug Deliv Rev2009;61:66. CrossRef

244. ZhangZ, WuJY, HaitWN, et al.Regulation of the stability of P‐glycoprotein by ubiquitination. Mol Pharmacol2004;66:395. CrossRef

245. TsujimotoM, HatozakiD, ShimaD, et al.Influence of serum in hemodialysis patients on the expression of intestinal and hepatic transporters for the excretion of pravastatin. Ther Apher Dial2012;16:580. CrossRef

246. FurukawaT, WakabayashiK, TamuraA, et al.Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res2009;26:469. CrossRef

247. KobayashiD, IeiriI, HirotaT, et al.Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos2005;33:94. CrossRef

248. KondoC, SuzukiH, ItodaM, et al.Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res2004;21:1895. CrossRef

249. Meyer zu SchwabedissenHE, KroemerHK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol2011;(201):325. CrossRef

250. KeskitaloJE, PasanenMK, NeuvonenPJ, et al.Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics2009;10:1617. CrossRef

251. KeskitaloJE, ZolkO, FrommMF, et al.ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther2009;86:197. CrossRef

252. SparreboomA, LoosWJ, BurgerH, et al.Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther2005;4:650. CrossRef

253. YamasakiY, IeiriI, KusuharaH, et al.Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther2008;84:95. CrossRef

254. ZhangW, YuBN, HeYJ, et al.Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta2006;373:99. CrossRef

255. HoffmeyerS, BurkO, von RichterO, et al.Functional polymorphisms of the human multidrug‐resistance gene: multiple sequence variations and correlation of one allele with P‐glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A2000;97:3473. CrossRef

256. XuG, BhatnagarV, WenG, et al.Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int2005;68:1491. CrossRef

257. PeltekovaVD, WintleRF, RubinLA, et al.Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet2004;36:471. CrossRef

258. UrbanTJ, GiacominiKM, RischN. Haplotype structure and ethnic‐specific allele frequencies at the OCTN locus: implications for the genetics of Crohn's disease. Inflamm Bowel Dis2005;11:78. CrossRef

259. AmeyawMM, RegateiroF, LiT, et al.MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics2001;11:217. CrossRef

260. CascorbiI, GerloffT, JohneA, et al.Frequency of single nucleotide polymorphisms in the P‐glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther2001;69:169. CrossRef

261. GradhandU, KimRB. Pharmacogenomics of MRP transporters (ABCC1‐5) and BCRP (ABCG2). Drug Metab Rev2008;40:317. CrossRef

262. IeiriI, TakaneH, OtsuboK. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet2004;43:553. CrossRef

263. LeeSS, KimSY, KimWY, et al.MDR1 genetic polymorphisms and comparison of MDR1 haplotype profiles in Korean and Vietnamese populations. Ther Drug Monit2005;27:531. CrossRef

264. SchaeffelerE, EichelbaumM, BrinkmannU, et al.Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet2001;358:383. CrossRef

265. HanHK. Role of transporters in drug interactions. Arch Pharm Res2011;34:1865. CrossRef

266. NeuvonenPJ, NiemiM, BackmanJT. Drug interactions with lipid‐lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther2006;80:565. CrossRef

267. MendellJ, ZahirH, MatsushimaN, et al.Drug‐drug interaction studies of cardiovascular drugs involving p‐glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs2013;13:331. CrossRef

268. BaileyDG. Fruit juice inhibition of uptake transport: a new type of food‐drug interaction. Br J Clin Pharmacol2010;70:645. CrossRef

269. Food and Drug Administration Center for Drug Evaluation and Research. Drug Interaction Studies – Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations (Draft Guidance), 2012.