Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Disorders of epithelial transport, metabolism, and digestion in the small intestine

1. ChangEB, SitrinMD, BlackDD. Gastrointestinal, Hepatobiliary, and Nutritional Physiology. Philadelphia: Lippincott‐Raven; 1996.

2. TreemWR. Congenital sucrase‐isomaltase deficiency. J Pediatr Gastroenterol Nutr1995;21:1. CrossRef

3. LebenthalE, Khin‐MaungU, ZhengBY, et al.Small intestinal glucoamylase deficiency and starch malabsorption: a newly recognized alpha‐glucosidase deficiency in children. J Pediatr1994;124:541. CrossRef

4. KarnsakulW, LuginbuehlU, HahnD, et al.Disaccharidase activities in dyspeptic children: biochemical and molecular investigations of maltase‐glucoamylase activity. J Pediatr Gastroenterol Nutr2002;35:551. CrossRef

5. TanK, TesarC, WiltonR, et al.Novel ‐glucosidase from human gut microbiome: substrate specificities and their switch. FASEB J2010;24:3939. CrossRef

6. FransenJA, HauriHP, GinselLA, et al.Naturally occurring mutations in intestinal sucrase‐isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit. J Cell Biol1991;115:45. CrossRef

7. NaimHY, RothJ, SterchiEE, et al.Sucrase‐isomaltase deficiency in humans. Different mutations disrupt intracellular transport, processing, and function of an intestinal brush border enzyme. J Clin Invest1988;82:667. CrossRef

8. OuwendijkJ, MoolenaarCE, PetersWJ, et al.Congenital sucrase‐isomaltase deficiency. Identification of a glutamine to proline substitution that leads to a transport block of sucrase‐isomaltase in a pre‐Golgi compartment. J Clin Invest1996;97:633. CrossRef

9. NaimHY, HeineM, ZimmerK‐P. Congenital sucrase‐isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. J Pediatr Gastroenterol Nutr2012;55(Suppl 2):S13. CrossRef

10. SpodsbergN, JacobR, AlfalahM, et al.Molecular basis of aberrant apical protein transport in an intestinal enzyme disorder. J Biol Chem2001;276:23506. CrossRef

11. JacobR, ZimmerKP, SchmitzJ, et al.Congenital sucrase‐isomaltase deficiency arising from cleavage and secretion of a mutant form of the enzyme. J Clin Invest2000;106:281. CrossRef

12. WeijersHA, va de KamerJH, MosselDA, et al.Diarrhoea caused by deficiency of sugar‐splitting enzymes. Lancet1960;2:296. CrossRef

13. GodaT, KoldovskyO. Dietary regulation of small intestinal disaccharidases. World Rev Nutr Diet1988;57:275. CrossRef

14. YehKY, YehM, HoltPR. Differential effects of thyroxine and cortisone on jejunal sucrase expression in suckling rats. Am J Physiol1989;256:G604.

15. TundisR, LoizzoMR, MenichiniF. Natural products as alpha‐amylase and alpha‐glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem2010;10:315. CrossRef

16. TreemWR. Clinical aspects and treatment of congenital sucrase‐isomaltase deficiency. J Pediatr Gastroenterol Nutr2012;55(Suppl 2):S7. CrossRef

17. Robayo‐TorresCC, Quezada‐CalvilloR, NicholsBL. Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol2006;4:276. CrossRef

18. UhrichS, WuZ, HuangJ‐Y, et al.Four mutations in the SI gene are responsible for the majority of clinical symptoms of CSID. J Pediatr Gastroenterol Nutr2012;55(Suppl 2):S34. CrossRef

19. WelshJD, PoleyJR, BhatiaM, et al.Intestinal disaccharidase activities in relation to age, race, and mucosal damage. Gastroenterology1978;75:847.

20. BellRR, DraperHH, BerganJG. Sucrose, lactose, and glucose tolerance in northern Alaskan Eskimos. Am J Clin Nutr1973;26:1185.

21. Gudmand‐HoyerE, FengerHJ, Kern‐HansenP, et al.Sucrase deficiency in Greenland. Incidence and genetic aspects. Scand J Gastroenterol1987;22:24. CrossRef

22. SmithJA, MayberryJF, AnsellID, et al.Small bowel biopsy for disaccharidase levels: evidence that endoscopic forceps biopsy can replace the Crosby capsule. Clin Chim Acta1989;183:317. CrossRef

23. LevittMD. Production and excretion of hydrogen gas in man. N Engl J Med1969;281:122. CrossRef

24. CallowayDH, MurphyEL, BauerD. Determination of lactose intolerance by breath analysis. Am J Dig Dis1969;14:811. CrossRef

25. Robayo‐TorresCC, OpekunAR, Quezada‐CalvilloR, et al.13C‐breath tests for sucrose digestion in congenital sucrase isomaltase‐deficient and sacrosidase‐supplemented patients. J Pediatr Gastroenterol Nutr2009;48:412. CrossRef

26. HarmsHK, Bertele‐HarmsRM, Bruer‐KleisD. Enzyme‐substitution therapy with the yeast Saccharomyces cerevisiae in congenital sucrase‐isomaltase deficiency. N Engl J Med1987;316:1306. CrossRef

27. TreemWR, AhsanN, SullivanB, et al.Evaluation of liquid yeast‐derived sucrase enzyme replacement in patients with sucrase‐isomaltase deficiency. Gastroenterology1993;105:1061.

28. CampbellAK, WaudJP, MatthewsSB. The molecular basis of lactose intolerance. Sci Prog2009;92:241. CrossRef

29. SwallowDM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet2003;37:197. CrossRef

30. IngramCJE, ElaminMF, MulcareCA, et al.A novel polymorphism associated with lactose tolerance in Africa: multiple causes for lactase persistence?Hum Genet2007;120:779. CrossRef

31. IngramCJE, MulcareCA, ItanY, et al.Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet2009;124:579. CrossRef

32. MattarR, de Campos MazoDF, CarrilhoFJ. Lactose intolerance: diagnosis, genetic, and clinical factors. Clin Exp Gastroenterol2012;5:113. CrossRef

33. EnattahNS, SahiT, SavilahtiE, et al.Identification of a variant associated with adult‐type hypolactasia. Nat Genet2002;30:233. CrossRef

34. RasinperaH, KuokkanenM, KolhoK‐L, et al.Transcriptional downregulation of the lactase (LCT) gene during childhood. Gut2005;54:1660. CrossRef

35. Robayo‐TorresCC, NicholsBL. Molecular differentiation of congenital lactase deficiency from adult‐type hypolactasia. Nutr Rev2007;65:95. CrossRef

36. LewinskyRH, JensenTGK, MollerJ, et al.T‐13910 DNA variant associated with lactase persistence interacts with Oct‐1 and stimulates lactase promoter activity in vitro. Hum Mol Genet2005;14:3945. CrossRef

37. EnattahNS, JensenTGK, NielsenM, et al.Independent introduction of two lactase‐persistence alleles into human populations reflects different history of adaptation to milk culture. Am J Hum Genet2008;82:57. CrossRef

38. TishkoffSA, ReedFA, RanciaroA, et al.Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet2007;39:31. CrossRef

39. OldsLC, SibleyE. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum Mol Genet2003;12:2333. CrossRef

40. HauriHP, SterchiEE, BienzD, et al.Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol1985;101:838. CrossRef

41. TorniainenS, FreddaraR, RoutiT, et al.Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD). BMC Gastroenterol2009;9:8. CrossRef

42. KuokkanenM, MyllyniemiM, VauhkonenM, et al.A biopsy‐based quick test in the diagnosis of duodenal hypolactasia in upper gastrointestinal endoscopy. Endoscopy2006;38:708. CrossRef

43. NewcomerAD, McGillDB, ThomasPJ, et al.Prospective comparison of indirect methods for detecting lactase deficiency. N Engl J Med1975;293:1232. CrossRef

44. TagCG, OberkaninsC, KriegshauserG, et al.Evaluation of a novel reverse‐hybridization StripAssay for typing DNA variants useful in diagnosis of adult‐type hypolactasia. Clin Chim Acta2008;392:58. CrossRef

45. WeiskirchenR, TagCG, MengsteabS, et al.Pitfalls in LightCycler diagnosis of the single‐nucleotide polymorphism 13.9 kb upstream of the lactase gene that is associated with adult‐type hypolactasia. Clin Chim Acta2007;384:93. CrossRef

46. LindquistB, MeeuwisseGW. Chronic diarrhoea caused by monosaccharide malabsorption. Acta Paediatr1962;51:674. CrossRef

47. SchneiderAJ, KinterWB, StirlingCE. Glucose‐galactose malabsorption. Report of a case with autoradiographic studies of a mucosal biopsy. N Engl J Med1966;274:305. CrossRef

48. WrightEM. I. Glucose galactose malabsorption. Am J Physiol1998;275:G879.

49. HedigerMA, TurkE, WrightEM. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A1989;86:5748. CrossRef

50. TurkE, ZabelB, MundlosS, et al.Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature1991;350:354. CrossRef

51. VallaeysL, BiervlietS, BruynG, et al.Congenital glucose–galactose malabsorption: a novel deletion within the SLC5A1 gene. Eur J Pediatr2012;172:409. CrossRef

52. MontesRG, GottalRF, BaylessTM, et al.Breath hydrogen testing as a physiology laboratory exercise for medical students. Am J Physiol1992;262:S25.

53. AnderssonDE, NygrenA. Four cases of long‐standing diarrhoea and colic pains cured by fructose‐free diet–a pathogenetic discussion. Acta Med Scand1978;203:87. CrossRef

54. KyawMH, MayberryJF. Fructose malabsorption: true condition or a variance from normality. J Clin Gastroenterol2011;45:16. CrossRef

55. BaroneS, FussellSL, SinghAK, et al.Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose‐induced hypertension. J Biol Chem2009;284:5056. CrossRef

56. DeBoschBJ, ChiM, MoleyKH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology2012;153:4181. CrossRef

57. JonesHF, ButlerRN, BrooksDA. Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol2011;300:G202. CrossRef

58. RaoSSC, AttaluriA, AndersonL, et al.Ability of the normal human small intestine to absorb fructose: evaluation by breath testing. Clin Gastroenterol Hepatol2007;5:959. CrossRef

59. Wilder‐SmithCH, MaternaA, WermelingerC, et al.Fructose and lactose intolerance and malabsorption testing: the relationship with symptoms in functional gastrointestinal disorders. Aliment Pharmacol Ther2013;37:1074. CrossRef

60. SanterR, SchneppenheimR, SuterD, et al.Fanconi‐Bickel syndrome–the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr1998;157:783. CrossRef

61. FanconiG, BickelH. Die chronische Aminoacidurie (Aminosäurediabetes oder nephrotisch‐glukosurischer Zwerg‐ wuchs) bei der Glykogenose und der Cystinkrankheit. Helv Paediatr Acta1949;4:359.

62. SanterR, SchneppenheimR, DombrowskiA, et al.Mutations in GLUT2, the gene for the liver‐type glucose transporter, in patients with Fanconi‐Bickel syndrome. Nat Genet1997;17:324. CrossRef

63. RandWM, PellettPL, YoungVR. Meta‐analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr2003;77:109.

64. EricksonRH, KimYS. Digestion and absorption of dietary protein. Annu Rev Med1990;41:133. CrossRef

65. GhishanFK, LeePC, LebenthalE, et al.Isolated congenital enterokinase deficiency. Recent findings and review of the literature. Gastroenterology1983;85:727.

66. HolzingerA, MaierEM, BuckC, et al.Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet2002;70:20. CrossRef

67. TownesPL. Trypsinogen deficiency disease. J Pediatr1965;66:275. CrossRef

68. BaronDN, DentCE, HarrisH, et al.Hereditary pellagra‐like skin rash with temporary cerebellar ataxia, constant renal amino‐aciduria, and other bizarre biochemical features. Lancet1956;271:421. CrossRef

69. KletaR, RomeoE, RisticZ, et al.Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet2004;36:999. CrossRef

70. SeowHF, BroerS, BroerA, et al.Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet2004;36:1003. CrossRef

71. AzmanovDN, KowalczukS, RodgersH, et al.Further evidence for allelic heterogeneity in Hartnup disorder. Hum Mutat2008;29:1217. CrossRef

72. Anon. Treatment of Hartnup disease with nicotinic acid. Nutr Rev1984;42:251.

73. CheonCK, LeeBH, KoJM, et al.Novel mutation in SLC6A19 causing late‐onset seizures in Hartnup disorder. Pediatr Neurol2010;42:369. CrossRef

74. de BaulnyHO, SchiffM, Dionisi‐ViciC. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab2012;106:12. CrossRef

75. SperandeoMP, AndriaG, SebastioG. Lysinuric protein intolerance: update and extended mutation analysis of theSLC7A7 gene. Hum Mutat2007;29:14. CrossRef

76. SimellO, PerheentupaJ, RapolaJ, et al.Lysinuric protein intolerance. Am J Med1975;59:229. CrossRef

77. BroerS. Lysinuric protein intolerance: one gene, many problems. AJP: Cell Physiology2007;293:C540. CrossRef

78. PartoK, PenttinenR, ParonenI, et al.Osteoporosis in lysinuric protein intolerance. J Inherit Metab Dis1993;16:441. CrossRef

79. EspositoV, LettieroT, FecarottaS, et al.Growth hormone deficiency in a patient with lysinuric protein intolerance. Eur J Pediatr2006;165:763. CrossRef

80. SebastioG, SperandeoMP, AndriaG. Lysinuric protein intolerance: reviewing concepts on a multisystem disease. Am J Med Genet C Semin Med Genet2011;157:54. CrossRef

81. SumorokN, GoldfarbDS. Update on cystinuria. Curr Opin Nephrol Hypertens2013;22:427. CrossRef

82. ChillarónJ, Font‐LlitjosM, FortJ, et al.Pathophysiology and treatment of cystinuria. Nat Rev Nephrol2010;6:424. CrossRef

83. DrummondKN, MichaelAF, UlstromRA, et al.The blue diaper syndrome: familial hypercalcemia with nephrocalcinosis and indicanuria; a new familial disease, with definition of the metabolic abnormality. Am J Med1964;37:928. CrossRef

84. AbumradNA, DavidsonNO. Role of the gut in lipid homeostasis. Physiol Rev2012;92:1061. CrossRef

85. Berriot‐VaroqueauxN, AggerbeckLP, Samson‐BoumaM, et al.The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr2000;20:663. CrossRef

86. WetterauJR, AggerbeckLP, BoumaME, et al.Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science1992;258:999. CrossRef

87. ShouldersCC, BrettDJ, BaylissJD, et al.Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet1993;2:2109. CrossRef

88. SharpD, BlindermanL, CombsKA, et al.Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature1993;365:65. CrossRef

89. MullerDPR. Vitamin E and neurological function. Mol Nutr Food Res2010;54:710. CrossRef

90. GorinMB, PaulTO, RaderDJ. Angioid streaks associated with abetalipoproteinemia. Ophthalmic Genet1994;15:151. CrossRef

91. DukerJS, BelmontJ, BosleyTM. Angioid streaks associated with abetalipoproteinemia. Case report. Arch Ophthalmol1987;105:1173. CrossRef

92. SchonfeldG. Familial hypobetalipoproteinemia: a review. J Lipid Res2003;44:878. CrossRef

93. WeltyFK, LahozC, TuckerKL, et al.Frequency of ApoB and ApoE gene mutations as causes of hypobetalipoproteinemia in the framingham offspring population. Arterioscler Thromb Vasc Biol1998;18:1745. CrossRef

94. TarugiP, AvernaM. Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem2011;54:81. CrossRef

95. PerettiN, SassolasA, RoyCC, et al.Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet J Rare Dis2010;5:24. CrossRef

96. JonesB, JonesEL, BonneySA, et al.Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet2003;34:29. CrossRef

97. PerettiN, RoyCC, SassolasA, et al.Chylomicron retention disease: a long term study of two cohorts. Mol Genet Metab2009;97:136. CrossRef

98. RobbBW, MatthewsJB. Bile salt diarrhea. Curr Gastroenterol Rep2005;7:379. CrossRef

99. GelbmannCM, SchteingartCD, ThompsonSM, et al.Mast cells and histamine contribute to bile acid‐stimulated secretion in the mouse colon. J Clin Invest1995;95:2831. CrossRef

100. LowesS, SimmonsNL. Human intestinal cell monolayers are preferentially sensitive to disruption of barrier function from basolateral exposure to cholic acid: correlation with membrane transport and transepithelial secretion. Pflugers Arch2001;443:265. CrossRef

101. HeubiJE, BalistreriWF, FondacaroJD, et al.Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology1982;83:804.

102. OelkersP, KirbyLC, HeubiJE, et al.Primary bile acid malabsorption caused by mutations in the ileal sodium‐dependent bile acid transporter gene (SLC10A2). J Clin Invest1997;99:1880. CrossRef

103. ThaysenEH, PedersenL. Idiopathic bile acid catharsis. Gut1976;17:965. CrossRef

104. KurienM, EvansKE, LeedsJS, et al.Bile acid malabsorption: an under‐investigated differential diagnosis in patients presenting with diarrhea predominant irritable bowel syndrome type symptoms. Scand J Gastroenterol2011;46:818. CrossRef

105. WaltersJRF, TasleemAM, OmerOS, et al.A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol2009;7:1189. CrossRef

106. WongBS, CamilleriM, CarlsonP, et al.Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin Gastroenterol Hepatol2012;10:1009. CrossRef

107. KaplanJ, WardDM, DomenicoI. The molecular basis of iron overload disorders and iron‐linked anemias. Int J Hematol2011;93:14. CrossRef

108. NemethE, TuttleMS, PowelsonJ, et al.Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science2004;306:2090. CrossRef

109. BabittJ, LinH. The molecular pathogenesis of hereditary hemochromatosis. Semin Liver Dis2011;31:280. CrossRef

110. RoettoA, PapanikolaouG, PolitouM, et al.Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet2003;33:21. CrossRef

111. PapanikolaouG, SamuelsME, LudwigEH, et al.Mutations in HFE2 cause iron overload in chromosome 1q‐linked juvenile hemochromatosis. Nat Genet2004;36:77. CrossRef

112. BabittJL, HuangFW, WrightingDM, et al.Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet2006;38:531. CrossRef

113. FernandesA, PrezaGC, PhungY, et al.The molecular basis of hepcidin‐resistant hereditary hemochromatosis. Blood2009;114:437. CrossRef

114. ShamRL, PhatakPD, NemethE, et al.Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations in a family with C326S ferroportin mutation. Blood2009;114:493. CrossRef

115. NemethE, RoettoA, GarozzoG, et al.Hepcidin is decreased in TFR2 hemochromatosis. Blood2005;105:1803. CrossRef

116. FlemingRE, AhmannJR, MigasMC, et al.Targeted mutagenesis of the murine transferrin receptor‐2 gene produces hemochromatosis. Proc Natl Acad Sci U S A2002;99:10653. CrossRef

117. KawabataH, FlemingRE, GuiD, et al.Expression of hepcidin is down‐regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood2005;105:376. CrossRef

118. GanE, PowellL, OlynykJ. Natural history and management of HFE‐hemochromatosis. Semin Liver Dis2011;31:293. CrossRef

119. TumerZ, MollerLB. Menkes disease. Eur J Hum Genet2010;18:511. CrossRef

120. ZimnickaAM, MaryonEB, KaplanJH. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J Biol Chem2007;282:26471. CrossRef

121. ZimnickaAM, IvyK, KaplanJH. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. AJP: Cell Physiology2011;300:C588. CrossRef

122. PetrisMJ, MercerJF, CulvenorJG, et al.Ligand‐regulated transport of the Menkes copper P‐type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J1996;15:6084.

123. TonnesenT, KleijerWJ, HornN. Incidence of Menkes disease. Hum Genet1991;86:408. CrossRef

124. GuYH, KodamaH, ShigaK, et al.A survey of Japanese patients with Menkes disease from 1990 to 2003: incidence and early signs before typical symptomatic onset, pointing the way to earlier diagnosis. J Inherit Metab Dis2005;28:473. CrossRef

125. KodamaH, FujisawaC, BhadhprasitW. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab2012;13:237. CrossRef

126. Kotula‐BalakM, LenartowiczM, KowalM, et al.Testicular morphology and expression of aromatase in testes of mice with the mosaic mutation (Atp7a mo‐ms). Theriogenology2007;67:423. CrossRef

127. SarkarB. Treatment of Wilson and menkes diseases. Chem Rev1999;99:2535. CrossRef

128. HuangL, TepaamorndechS. The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med2013;34:548. CrossRef

129. WangX, ZhouB. Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life2010;62:176. CrossRef

130. KrebsNF. Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr2000;130(5S Suppl):1374S.

131. MaverakisE, FungMA, LynchPJ, et al.Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol2007;56:116. CrossRef

132. SchmittS, KüryS, GiraudM, et al.An update on mutations of the SLC39A4gene in acrodermatitis enteropathica. Hum Mutat2009;30:926. CrossRef

133. WedenojaS, PekansaariE, HoglundP, et al.Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat2011;32:715. CrossRef

134. HoglundP, AuranenM, SochaJ, et al.Genetic background of congenital chloride diarrhea in high‐incidence populations: Finland, Poland, and Saudi Arabia and Kuwait. Am J Hum Genet1998;63:760. CrossRef

135. HolmbergC. Congenital chloride diarrhoea. Clin Gastroenterol1986;15:583.

136. WedenojaS, Ha GlundP, HolmbergC. Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther2010;31:477. CrossRef

137. AichbichlerBW, ZerrCH, Santa AnaCA, et al.Proton‐pump inhibition of gastric chloride secretion in congenital chloridorrhea. N Engl J Med1997;336:106. CrossRef

138. CananiRB, TerrinG, CirilloP, et al.Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology2004;127:630. CrossRef

139. FellJM, MillerMP, FinkelY, et al.Congenital sodium diarrhea with a partial defect in jejunal brush border membrane sodium transport, normal rectal transport, and resolving diarrhea. J Pediatr Gastroenterol Nutr1992;15:112. CrossRef

140. KellerKM, WirthS, BaumannW, et al.Defective jejunal brush border membrane sodium/proton exchange in association with lethal familial protracted diarrhoea. Gut1990;31:1156. CrossRef

141. BoothIW, StangeG, MurerH, et al.Defective jejunal brush‐border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet1985;1:1066. CrossRef

142. HolmbergC, PerheentupaJ. Congenital Na+ diarrhea: a new type of secretory diarrhea. J Pediatr1985;106:56. CrossRef

143. BaumM, MartinMG, BoothIW, et al.Nucleotide sequence of the Na+/H+ exchanger‐8 in patients with congenital sodium diarrhea. J Pediatr Gastroenterol Nutr2011;53:474.

144. Heinz‐ErianP, MullerT, KrabichlerB, et al.Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet2009;84:188. CrossRef

145. SuhSM, TashjianAHJ, MatsuoN, et al.Pathogenesis of hypocalcemia in primary hypomagnesemia: normal end‐organ responsiveness to parathyroid hormone, impaired parathyroid gland function. J Clin Invest1973;52:153. CrossRef

146. AnastCS, MohsJM, KaplanSL, et al.Evidence for parathyroid failure in magnesium deficiency. Science1972;177:606. CrossRef

147. SchlingmannKP, WaldeggerS, KonradM, et al.TRPM6 and TRPM7 – Gatekeepers of human magnesium metabolism. Biochim Biophys Acta2007;1772:813. CrossRef

148. MillaPJ, AggettPJ, WolffOH, et al.Studies in primary hypomagnesaemia: evidence for defective carrier‐mediated small intestinal transport of magnesium. Gut1979;20:1028. CrossRef

149. WalderRY, LandauD, MeyerP, et al.Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet2002;31:171. CrossRef

150. SchlingmannKP, KonradM, SeyberthHRW. Genetics of hereditary disorders of magnesium homeostasis. Pediatric Nephrology2004;19:13. CrossRef

151. SchlingmannKP. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol2005;16:3061. CrossRef

152. GellerJ, KronnD, JayaboseS, et al.Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore)2002;81:51. CrossRef

153. NielsenMJ, RasmussenMR, AndersenCBF, et al.Vitamin B12 transport from food to the body's cells–a sophisticated, multistep pathway. Nat Rev Gastroenterol Hepatol2012;9:345. CrossRef

154. AllenRH, SeetharamB, PodellE, et al.Effect of proteolytic enzymes on the binding of cobalamin to R protein and intrinsic factor. In vitro evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Invest1978;61:47. CrossRef

155. BirnH, VerroustPJ, NexoE, et al.Characterization of an epithelial approximately 460‐kDa protein that facilitates endocytosis of intrinsic factor‐vitamin B12 and binds receptor‐associated protein. J Biol Chem1997;272:26497. CrossRef

156. FyfeJC, MadsenM, HojrupP, et al.The functional cobalamin (vitamin B12)‐intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood2004;103:1573. CrossRef

157. HallCA. The carriers of native vitamin B12 in normal human serum. Clin Sci Mol Med1977;53:453.

158. QuadrosEV, NakayamaY, SequeiraJM. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin‐bound cobalamin. Blood2009;113:186. CrossRef

159. WatkinsD, RosenblattDS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet2011;157:33. CrossRef

160. StablerSP. Clinical practice. Vitamin B12 deficiency. N Engl J Med2013;368:149. CrossRef

161. HealtonEB, SavageDG, BrustJC, et al.Neurologic aspects of cobalamin deficiency. Medicine (Baltimore)1991;70:229. CrossRef

162. AdcockBB, McKnightJT. Cobalamin pseudodeficiency due to a transcobalamin I deficiency. South Med J2002;95:1060. CrossRef

163. YassinF, RothenbergSP, RaoS, et al.Identification of a 4‐base deletion in the gene in inherited intrinsic factor deficiency. Blood2004;103:1515. CrossRef

164. TannerSM, AminoffM, WrightFA, et al.Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet2003;33:426. CrossRef

165. AminoffM, CarterJE, ChadwickRB, et al.Mutations in CUBN, encoding the intrinsic factor‐vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet1999;21:309. CrossRef

166. NexoE, Hoffmann‐LuckeE. Holotranscobalamin, a marker of vitamin B‐12 status: analytical aspects and clinical utility. Am J Clin Nutr2011;94:359S. CrossRef

167. NyhanWL. Inborn errors of biotin metabolism. Arch Dermatol1987;123:1696. CrossRef

168. SaidHM. Intestinal absorption of water‐soluble vitamins in health and disease. Biochem J2011;437:357. CrossRef

169. ZempleniJ, KuroishiT. Biotin. Adv Nutr2012;3:213. CrossRef

170. BoschAM, AbelingNGGM, IjlstL, et al.Brown‐Vialetto‐Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis2011;34:159. CrossRef

171. ReboulE, BorelP. Proteins involved in uptake, intracellular transport and basolateral secretion of fat‐soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res2011;50:388. CrossRef

172. ReboulE. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients2013;5:3563. CrossRef

173. SeeligerMW, BiesalskiHK, WissingerB, et al.Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Invest Ophthalmol Vis Sci1999;40:3.

174. BorelP, PreveraudD, DesmarchelierC. Bioavailability of vitamin E in humans: an update. Nutr Rev2013;71:319. CrossRef

175. OuahchiK, AritaM, KaydenH, et al.Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha‐tocopherol transfer protein. Nat Genet1995;9:141. CrossRef

176. BorelP, MoussaM, ReboulE, et al.Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J Nutr2007;137:2653.

177. RosenCJ. Clinical practice. Vitamin D insufficiency. N Engl J Med2011;364:248. CrossRef

178. ShearerMJ, FuX, BoothSL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr2012;3:182. CrossRef

179. GeorgesA, BonneauJ, Bonnefort‐RousselotD, et al.Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease. Orphanet J Rare Dis2011;6:1. CrossRef