Yamada’s Textbook of Gastroenterology

Sixth Edition

Edited by Daniel K. Podolsky,
Michael Camilleri, J. Gregory Fitz,
Anthony N. Kalloo, Fergus Shanahan, Timothy C. Wang

References

Inflammatory bowel diseases: pathogenesis

1. CosnesJ, CattanS, BlainA, et al.Long‐term evolution of disease behavior of Crohn's disease. Inflamm Bowel Dis2002;8:244. CrossRef

2. CosnesJ, Gower‐RousseauC, SeksikP, et al.Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology2011;140:1785. CrossRef

3. MolodeckyNA, SoonIS, RabiDM, et al.Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology2012;142:46; quiz e30. CrossRef

4. NgSC, TangW, ChingJY, et al.Incidence and phenotype of inflammatory bowel disease based on results from the Asia‐pacific Crohn's and colitis epidemiology study. Gastroenterology2013;145:158. CrossRef

5. ThiaKT, LoftusEVJr, SandbornWJ, et al.An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol2008;103:3167. CrossRef

6. JostinsL, RipkeS, WeersmaRK, et al.Host‐microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature2012;491:119. CrossRef

7. BinderV, OrholmM. Familial occurrence and inheritance studies in inflammatory bowel disease. Neth J Med1996;48:53. CrossRef

8. YangH, McElreeC, RothMP, et al.Familial empirical risks for inflammatory bowel disease: differences between Jews and non‐Jews. Gut1993;34:517. CrossRef

9. BergeronV, GrondinV, RajcaS, et al.Current smoking differentially affects blood mononuclear cells from patients with Crohn's disease and ulcerative colitis: relevance to its adverse role in the disease. Inflamm Bowel Dis2012;18:1101. CrossRef

10. MainJ, McKenzieH, YeamanGR, et al.Antibody to Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease. BMJ1988;297:1105. CrossRef

11. PrideauxL, De CruzP, NgSC, et al.Serological antibodies in inflammatory bowel disease: a systematic review. Inflamm Bowel Dis2012;18:1340. CrossRef

12. FerranteM, HenckaertsL, JoossensM, et al.New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut2007;56:1394. CrossRef

13. IsraeliE, GrottoI, GilburdB, et al.Anti‐Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut2005;54:1232. CrossRef

14. LichtensteinGR, TarganSR, DubinskyMC, et al.Combination of genetic and quantitative serological immune markers are associated with complicated Crohn's disease behavior. Inflamm Bowel Dis2011;17:2488. CrossRef

15. DubinskyMC, LinYC, DutridgeD, et al.Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression. Am J Gastroenterol2006;101:360. CrossRef

16. DesirB, AmreDK, LuSE, et al.Utility of serum antibodies in determining clinical course in pediatric Crohn's disease. Clin Gastroenterol Hepatol2004;2:139. CrossRef

17. KhorB, GardetA, XavierRJ. Genetics and pathogenesis of inflammatory bowel disease. Nature2011;474:307. CrossRef

18. LeesCW, BarrettJC, ParkesM, et al.New IBD genetics: common pathways with other diseases. Gut2011;60:1739. CrossRef

19. AhmadT, MarshallSE, JewellD. Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol2006;12:3628.

20. SatsangiJ, WelshKI, BunceM, et al.Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet1996;347:1212. CrossRef

21. StokkersPC, ReitsmaPH, TytgatGN, et al.HLA‐DR and ‐DQ phenotypes in inflammatory bowel disease: a meta‐analysis. Gut1999;45:395. CrossRef

22. OrchardTR, ThiyagarajaS, WelshKI, et al.Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology2000;118:274. CrossRef

23. KarlsenTH, FrankeA, MelumE, et al.Genome‐wide association analysis in primary sclerosing cholangitis. Gastroenterology2010;138:1102. CrossRef

24. WeizmanA, HuangB, BerelD, et al.Clinical, serologic, and genetic factors associated with pyoderma gangrenosum and erythema nodosum in inflammatory bowel disease patients. Inflamm Bowel Dis2014;20:525. CrossRef

25. KotlarzD, BeierR, MuruganD, et al.Loss of interleukin‐10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology2012;143:347. CrossRef

26. PalmO, MoumB, OngreA, et al.Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). J Rheumatol2002;29:511.

27. WengX, LiuL, BarcellosLF, et al.Clustering of inflammatory bowel disease with immune mediated diseases among members of a northern california‐managed care organization. Am J Gastroenterol2007;102:1429. CrossRef

28. CohenR, RobinsonDJr, ParamoreC, et al.Autoimmune disease concomitance among inflammatory bowel disease patients in the United States, 2001‐2002. Inflamm Bowel Dis2008;14:738. CrossRef

29. JanseM, LambertsLE, FrankeL, et al.Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology2011;53:1977. CrossRef

30. LiX, YangY, ZhouF, et al.SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta‐analysis. PLoS ONE2011;6:e15831. CrossRef

31. KumarD, NathL, KamalMA, et al.Genome‐wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell2010;140:731. CrossRef

32. MarcinekP, JhaAN, ShindeV, et al.LRRK2 and RIPK2 variants in the NOD 2‐mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PLoS ONE2013;8:e73103. CrossRef

33. GrantAV, AlterA, HuongNT, et al.Crohn's disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis2012;206:1763. CrossRef

34. WongSH, HillAV, VannbergFO, et al.Genomewide association study of leprosy. N Engl J Med2010;362:1446; 1447. CrossRef

35. BerringtonWR, MacdonaldM, KhadgeS, et al.Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis2010;201:1422. CrossRef

36. HollandSM, DeLeoFR, ElloumiHZ, et al.STAT3 mutations in the hyper‐IgE syndrome. N Engl J Med2007;357:1608. CrossRef

37. MinegishiY, SaitoM, TsuchiyaS, et al.Dominant‐negative mutations in the DNA‐binding domain of STAT3 cause hyper‐IgE syndrome. Nature2007;448:1058. CrossRef

38. GlockerEO, HennigsA, NabaviM, et al.A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med2009;361:1727. CrossRef

39. MokryM, MiddendorpS, WiegerinckCL, et al.Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology2014;146:1040. CrossRef

40. KhalilAM, GuttmanM, HuarteM, et al.Many human large intergenic noncoding RNAs associate with chromatin‐modifying complexes and affect gene expression. Proc Natl Acad Sci U S A2009;106:11667. CrossRef

41. RivasMA, BeaudoinM, GardetA, et al.Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet2011;43:1066. CrossRef

42. BeaudoinM, GoyetteP, BoucherG, et al.Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet2013;9:e1003723. CrossRef

43. TrabzuniD, RytenM, EmmettW, et al.Fine‐mapping, gene expression and splicing analysis of the disease associated LRRK2 locus. PLoS ONE2013;8:e70724. CrossRef

44. SokolH, ConwayKL, ZhangM, et al.Card9 mediates intestinal epithelial cell restitution, T‐helper 17 responses, and control of bacterial infection in mice. Gastroenterology2013;145:591. CrossRef

45. VenthamNT, KennedyNA, NimmoER, et al.Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology2013;145:293. CrossRef

46. NimmoER, PrendergastJG, AldhousMC, et al.Genome‐wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis2012;18:889. CrossRef

47. KoukosG, PolytarchouC, KaplanJL, et al.MicroRNA‐124 regulates STAT3 expression and is down‐regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology2013;145:842. CrossRef

48. LuC, ChenJ, XuHG, et al.MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1‐mediated autophagy. Gastroenterology2014;146:188. CrossRef

49. NguyenHT, DalmassoG, MullerS, et al.Crohn's disease‐associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology2014;146:508. CrossRef

50. BrainO, OwensBM, PichulikT, et al.The intracellular sensor NOD2 induces microRNA‐29 expression in human dendritic cells to limit IL‐23 release. Immunity2013;39:521. CrossRef

51. AbrahamC, ChoJH. Inflammatory bowel disease. N Engl J Med2009;361:2066. CrossRef

52. TurnerJR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol2006;169:1901. CrossRef

53. HedinCR, StaggAJ, WhelanK, et al.Family studies in Crohn's disease: new horizons in understanding disease pathogenesis, risk and prevention. Gut2012;61:311. CrossRef

54. D'IncaR, AnneseV, di LeoV, et al.Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn's disease. Aliment Pharmacol Ther2006;23:1455. CrossRef

55. MuiseAM, WaltersTD, GlowackaWK, et al.Polymorphisms in E‐cadherin (CDH1) result in a mis‐localised cytoplasmic protein that is associated with Crohn's disease. Gut2009;58:1121. CrossRef

56. SchneiderMR, DahlhoffM, HorstD, et al.A key role for E‐cadherin in intestinal homeostasis and Paneth cell maturation. PLoS ONE2010;5:e14325. CrossRef

57. ScharlM, PaulG, WeberA, et al.Protection of epithelial barrier function by the Crohn's disease associated gene protein tyrosine phosphatase n2. Gastroenterology2009;137:2030. CrossRef

58. MurchieR, GuoCH, PersaudA, et al.Protein tyrosine phosphatase sigma targets apical junction complex proteins in the intestine and regulates epithelial permeability. Proc Natl Acad Sci U S A2014;111:693. CrossRef

59. GlasJ, SeidererJ, CzamaraD, et al.PTGER4 expression‐modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF‐kappaB and XBP1 binding sites. PLoS ONE2012;7:e52873. CrossRef

60. van SommerenS, VisschedijkMC, FestenEA, et al.HNF4alpha and CDH1 are associated with ulcerative colitis in a Dutch cohort. Inflamm Bowel Dis2011;17:1714. CrossRef

61. UK IBD Genetics Consortium, BarrettJC, LeeJC, et al.Genome‐wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet2009;41:1330. CrossRef

62. AhnSH, ShahYM, InoueJ, et al.Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm Bowel Dis2008;14:908. CrossRef

63. DarsignyM, BabeuJP, DupuisAA, et al.Loss of hepatocyte‐nuclear‐factor‐4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLoS ONE2009;4:e7609. CrossRef

64. WillsonTA, JurickovaI, CollinsM, et al.Deletion of intestinal epithelial cell STAT3 promotes T‐lymphocyte STAT3 activation and chronic colitis following acute dextran sodium sulfate injury in mice. Inflamm Bowel Dis2013;19:512. CrossRef

65. OkamotoT, UemotoS, TabataY. Prevention of trinitrobenzene sulfonic acid‐induced experimental colitis by oral administration of a poly(lactic‐coglycolic acid) microsphere containing prostaglandin E(2) receptor subtype 4 agonist. J Pharmacol Exp Ther2012;341:340. CrossRef

66. KabashimaK, SajiT, MurataT, et al.The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest2002;109:883. CrossRef

67. GloverLE, BowersBE, SaeediB, et al.Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A2013;110:19820. CrossRef

68. MastrogiannakiM, MatakP, KeithB, et al.HIF‐2alpha, but not HIF‐1alpha, promotes iron absorption in mice. J Clin Invest2009;119:1159. CrossRef

69. AnanthakrishnanAN, KhaliliH, HiguchiLM, et al.Higher predicted vitamin D status is associated with reduced risk of Crohn's disease. Gastroenterology2012;142:482. CrossRef

70. AnanthakrishnanAN, CaganA, GainerVS, et al.Normalization of plasma 25‐hydroxy vitamin D is associated with reduced risk of surgery in Crohn's disease. Inflamm Bowel Dis2013;19:1921.

71. JorgensenSP, AgnholtJ, GlerupH, et al.Clinical trial: vitamin D3 treatment in Crohn's disease – a randomized double‐blind placebo‐controlled study. Aliment Pharmacol Ther2010;32:377. CrossRef

72. LiuW, ChenY, GolanMA, et al.Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest2013;123:3983. CrossRef

73. GeremiaA, BiancheriP, AllanP, et al.Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev2014;13:3. CrossRef

74. StrugalaV, DettmarPW, PearsonJP. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn's disease. Int J Clin Pract2008;62:762. CrossRef

75. FyderekK, StrusM, Kowalska‐DuplagaK, et al.Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol2009;15:5287. CrossRef

76. SchultszC, Van Den BergFM, Ten KateFW, et al.The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology1999;117:1089. CrossRef

77. KleessenB, KroesenAJ, BuhrHJ, et al.Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol2002;37:1034. CrossRef

78. CadwellK, LiuJY, BrownSL, et al.A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature2008;456:259. CrossRef

79. VandussenKL, LiuTC, LiD, et al.Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn's disease. Gastroenterology2014;146:200. CrossRef

80. AlenghatT, OsborneLC, SaenzSA, et al.Histone deacetylase 3 coordinates commensal‐bacteria‐dependent intestinal homeostasis. Nature2013;504:153. CrossRef

81. KaserA, FlakMB, TomczakMF, et al.The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp Cell Res2011;317:2772. CrossRef

82. MaA. Unresolved ER stress inflames the intestine. Cell2008;134:724. CrossRef

83. KaserA, LeeAH, FrankeA, et al.XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell2008;134:743. CrossRef

84. MaloyKJ, PowrieF. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature2011;474:298. CrossRef

85. HugotJP, ChamaillardM, ZoualiH, et al.Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease. Nature2001;411:599. CrossRef

86. OguraY, BonenDK, InoharaN, et al.A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature2001;411:603. CrossRef

87. RosentulDC, PlantingaTS, OostingM, et al.Genetic variation in the dectin‐1/CARD9 recognition pathway and susceptibility to candidemia. J Infect Dis2011;204:1138. CrossRef

88. CadwellK, PatelKK, MaloneyNS, et al.Virus‐plus‐susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell2010;141:1135. CrossRef

89. PatelKK, MiyoshiH, BeattyWL, et al.Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J2013;32:3130. CrossRef

90. ConwayKL, KuballaP, SongJH, et al.Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology2013;145:1347. CrossRef

91. ZhuH, LiYR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood)2012;237:474. CrossRef

92. FujinoS, AndohA, BambaS, et al.Increased expression of interleukin 17 in inflammatory bowel disease. Gut2003;52:65. CrossRef

93. HellerF, FlorianP, BojarskiC, et al.Interleukin‐13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology2005;129:550. CrossRef

94. FussIJ, HellerF, BoirivantM, et al.Nonclassical CD1d‐restricted NK T cells that produce IL‐13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest2004;113:1490. CrossRef

95. DuerrRH, TaylorKD, BrantSR, et al.A genome‐wide association study identifies IL23R as an inflammatory bowel disease gene. Science2006;314:1461. CrossRef

96. SandbornWJ, GasinkC, GaoLL, et al.Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N Engl J Med2012;367:1519. CrossRef

97. HueberW, SandsBE, LewitzkyS, et al.Secukinumab, a human anti‐IL‐17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double‐blind placebo‐controlled trial. Gut2012;61:1693. CrossRef

98. SchreiberS, FedorakRN, NielsenOH, et al.Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL‐10 Cooperative Study Group. Gastroenterology2000;119:1461. CrossRef

99. MonteleoneG, KumberovaA, CroftNM, et al.Blocking Smad7 restores TGF‐beta1 signaling in chronic inflammatory bowel disease. J Clin Invest2001;108:601. CrossRef

100. FahlenL, ReadS, GorelikL, et al.T cells that cannot respond to TGF‐beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med2005;201:737. CrossRef

101. ProbertCS, ChristAD, SaubermannLJ, et al.Analysis of human common bile duct‐associated T cells: evidence for oligoclonality, T cell clonal persistence, and epithelial cell recognition. J Immunol1997;158:1941.

102. FreemanHJ. Colitis associated with biological agents. World J Gastroenterol2012;18:1871. CrossRef

103. VirkR, ShinagareS, LauwersGY, et al.Tissue IgG4‐positive plasma cells in inflammatory bowel disease: a study of 88 treatment‐naive biopsies of inflammatory bowel disease. Mod Pathol2014;27:454.

104. RainaA, YadavD, RegueiroM, et al.Mucosal IgG4 cell infiltration in ulcerative colitis is linked to disease activity and primary sclerosing cholangitis. Inflamm Bowel Dis2013;19:1232. CrossRef

105. Van AsscheG, SandbornWJ, FeaganBG, et al.Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut2006;55:1568. CrossRef

106. TarganSR, FeaganBG, FedorakRN, et al.Natalizumab for the treatment of active Crohn's disease: results of the ENCORE Trial. Gastroenterology2007;132:1672. CrossRef

107. SandbornWJ, FeaganBG, RutgeertsP, et al.Vedolizumab as induction and maintenance therapy for Crohn's disease. N Engl J Med2013;369:711. CrossRef

108. FeaganBG, RutgeertsP, SandsBE, et al.Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med2013;369:699. CrossRef

109. HatoumOA, HeidemannJ, BinionDG. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease. Ann N Y Acad Sci2006;1072:78. CrossRef

110. HorowitzS, BinionDG, NelsonVM, et al.Increased arginase activity and endothelial dysfunction in human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol2007;292:G1323. CrossRef

111. BinionDG, RafieeP, RamanujamKS, et al.Deficient iNOS in inflammatory bowel disease intestinal microvascular endothelial cells results in increased leukocyte adhesion. Free Radic Biol Med2000;29:881. CrossRef

112. DhillonSS, MastropaoloLA, MurchieR, et al.Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin Transl Gastroenterol2014;5:e46. CrossRef

113. BrunP, GironMC, QesariM, et al.Toll‐like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology2013;145:1323. CrossRef

114. TurnbaughPJ, QuinceC, FaithJJ, et al.Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A2010;107:7503. CrossRef

115. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature2012;486:207. CrossRef

116. MorganXC, TickleTL, SokolH, et al.Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol2012;13:R79. CrossRef

117. WuGD, ChenJ, HoffmannC, et al.Linking long‐term dietary patterns with gut microbial enterotypes. Science2011;334:105. CrossRef

118. RutgeertsP, GoboesK, PeetersM, et al.Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet1991;338:771. CrossRef

119. D'HaensGR, GeboesK, PeetersM, et al.Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology1998;114:262. CrossRef

120. ShawSY, BlanchardJF, BernsteinCN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol2010;105:2687. CrossRef

121. OttSJ, MusfeldtM, WenderothDF, et al.Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut2004;53:685. CrossRef

122. FrankDN, St AmandAL, FeldmanRA, et al.Molecular‐phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A2007;104:13780. CrossRef

123. SepehriS, KhafipourE, BernsteinCN, et al.Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm Bowel Dis2011;17:1451. CrossRef

124. MeconiS, VercelloneA, LevillainF, et al.Adherent‐invasive Escherichia coli isolated from Crohn's disease patients induce granulomas in vitro. Cell Microbiol2007;9:1252. CrossRef

125. Darfeuille‐MichaudA, BoudeauJ, BuloisP, et al.High prevalence of adherent‐invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology2004;127:412. CrossRef

126. GlasserAL, BoudeauJ, BarnichN, et al.Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect Immun2001;69:5529. CrossRef

127. DharmaniP, StraussJ, AmbroseC, et al.Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun2011;79:2597. CrossRef

128. StraussJ, KaplanGG, BeckPL, et al.Invasive potential of gut mucosa‐derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis2011;17:1971. CrossRef

129. SokolH, SeksikP, FuretJP, et al.Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis2009;15:1183. CrossRef

130. SokolH, PigneurB, WatterlotL, et al.Faecalibacterium prausnitzii is an anti‐inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A2008;105:16731. CrossRef

131. MiquelS, MartinR, RossiO, et al.Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol2013;16:255. CrossRef

132. MartinR, ChainF, MiquelS, et al.The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS‐induced chronic moderate and severe colitis models. Inflamm Bowel Dis2014;20:417. CrossRef

133. GeversD, KugathasanS, DensonLA, et al.The treatment‐naive microbiome in new‐onset Crohn's disease. Cell Host Microbe2014;15:382. CrossRef

134. ConwayKL, GoelG, SokolH, et al.p40phox expression regulates neutrophil recruitment and function during the resolution phase of intestinal inflammation. J Immunol2012;189:3631. CrossRef

135. SomasundaramR, DeuringJJ, van der WoudeCJ, et al.Linking risk conferring mutations in NCF4 to functional consequences in Crohn's disease. Gut2012;61:1097; 1097. CrossRef

136. DevkotaS, WangY, MuschMW, et al.Dietary‐fat‐induced taurocholic acid promotes pathobiont expansion and colitis in Il10‐/‐ mice. Nature2012;487:104.

137. KnightsD, LassenKG, XavierRJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut2013;62:1505. CrossRef

138. WenL, LeyRE, VolchkovPY, et al.Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature2008;455:1109. CrossRef

139. GarrettWS, LordGM, PunitS, et al.Communicable ulcerative colitis induced by T‐bet deficiency in the innate immune system. Cell2007;131:33. CrossRef

140. OttSJ, KuhbacherT, MusfeldtM, et al.Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol2008;43:831. CrossRef

141. BirrenbachT, BockerU. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis2004;10:848. CrossRef

142. van der HeideF, DijkstraA, WeersmaRK, et al.Effects of active and passive smoking on disease course of Crohn's disease and ulcerative colitis. Inflamm Bowel Dis2009;15:1199. CrossRef

143. HiguchiLM, KhaliliH, ChanAT, et al.A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol2012;107:1399. CrossRef

144. AnderssonRE, OlaisonG, TyskC, et al.Appendectomy and protection against ulcerative colitis. N Engl J Med2001;344:808. CrossRef

145. ShawSY, BlanchardJF, BernsteinCN. Association between the use of antibiotics and new diagnoses of Crohn's disease and ulcerative colitis. Am J Gastroenterol2011;106:2133. CrossRef

146. KronmanMP, ZaoutisTE, HaynesK, et al.Antibiotic exposure and IBD development among children: a population‐based cohort study. Pediatrics2012;130:e794. CrossRef

147. IBD in EPIC Study Investigators, TjonnelandA, OvervadK, et al.Linoleic acid, a dietary n‐6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case‐control study within a European prospective cohort study. Gut2009;58:1606. CrossRef

148. de SilvaPS, OlsenA, ChristensenJ, et al.An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology2010;139:1912. CrossRef

149. AnanthakrishnanAN, KhaliliH, KonijetiGG, et al.Long‐term intake of dietary fat and risk of ulcerative colitis and Crohn's disease. Gut2014;63:776. CrossRef

150. AnanthakrishnanAN, KhaliliH, KonijetiGG, et al.A prospective study of long‐term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology2013;145:970. CrossRef

151. AmreDK, D'SouzaS, MorganK, et al.Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn's disease in children. Am J Gastroenterol2007;102:2016. CrossRef

152. AnanthakrishnanAN, KhaliliH, PanA, et al.Association between depressive symptoms and incidence of Crohn's disease and ulcerative colitis: results from the Nurses' Health Study. Clin Gastroenterol Hepatol2013;11:57. CrossRef

153. AnanthakrishnanAN, HiguchiLM, HuangES, et al.Aspirin, nonsteroidal anti‐inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med2012;156:350. CrossRef

154. KhaliliH, HiguchiLM, AnanthakrishnanAN, et al.Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut2013;62:1153. CrossRef

155. KhaliliH, HiguchiLM, AnanthakrishnanAN, et al.Hormone therapy increases risk of ulcerative colitis but not Crohn's disease. Gastroenterology2012;143:1199. CrossRef

156. AnanthakrishnanAN, IssaM, BinionDG. Clostridium difficile and inflammatory bowel disease. Med Clin North Am2010;94:135. CrossRef

157. AnanthakrishnanAN, McGinleyEL, BinionDG. Excess hospitalisation burden associated with Clostridium difficile in patients with inflammatory bowel disease. Gut2008;57:205. CrossRef

158. AnanthakrishnanAN, OxfordEC, NguyenDD, et al.Genetic risk factors for Clostridium difficile infection in ulcerative colitis. Aliment Pharmacol Ther2013;38:522. CrossRef

159. LowD, NguyenDD, MizoquchiE, et al.Animal models of ulcerative colitis and their application in drug research. Drug Des Devel Ther2013;7:1341.

160. AssemanC, FowlerS, PowrieF. Control of experimental inflammatory bowel disease by regulatory T cells. Am J Respir Crit Care Med2000;162:S185. CrossRef

161. LiuZ, JiuJ, LiuS, et al.Blockage of tumor necrosis factor prevents intestinal mucosal inflammation through down‐regulation of interleukin‐23 secretion. J Autoimmun2007;29:187. CrossRef

162. BhanAK, MizoguchiE, SmithRN, et al.Spontaneous chronic colitis in TCR alpha‐mutant mice; an experimental model of human ulcerative colitis. Int Rev Immunol2000;19:123. CrossRef

163. PodolskyDK. Lessons from genetic models of inflammatory bowel disease. Acta Gastroenterol Belg1997;60:163.

164. CongY, BrandweinSL, McCabeRP, et al.CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med1998;187:855. CrossRef

165. WirtzS, NeurathMF. Mouse models of inflammatory bowel diseaseAdv Drug Deliv Rev2007;59:1073. CrossRef

166. MitsuyamaK, MatsumotoS, Rose‐JohnS, et al.STAT3 activation via interleukin 6 trans‐signalling contributes to ileitis in SAMP1/Yit mice. Gut2006;55:1263. CrossRef